Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057106    DOI: 10.1088/1674-1056/22/5/057106
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High sensitivity Hall devices with AlSb/InAs quantum well structures

Zhang Yang (张杨)a b, Zhang Yu-Wei (张雨溦)b, Wang Cheng-Yan (王成艳)b, Guan Min (关敏)b, Cui Li-Jie (崔利杰)b, Li Yi-Yang (李弋洋)b, Wang Bao-Qiang (王宝强)b, Zhu Zhan-Ping (朱战平)b, Zeng Yi-Ping (曾一平)b
a Key Laboratory of Semiconductor Materials Science, Chinese Academy of Sciences, Beijing 100083, China;
b Material Science Center,Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  AlSb/InAs quantum well (QW) structures and InAs films on GaAs (001) substrates were grown by molecular beam epitaxy (MBE). We investigated the dependence of electron mobility and two-dimensional electron gas (2DEG) concentration on the thickness of an InAs channel. It is found that electron mobility as high as 19050 cm2·V-1·s-1 has been achieved for an InAs channel of 22.5 nm. The Hall devices with high sensitivity and good temperature stability were fabricated based on the AlSb/InAs QW structures. Their sensitivity is markedly superior to Hall devices of InAs films.
Keywords:  antimonide semiconductors      quantum well      molecular beam epitaxy  
Received:  19 September 2012      Revised:  23 October 2012      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  85.30.Fg (Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))  
  73.40.-c (Electronic transport in interface structures)  
Fund: Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences, China (Grant No. ISCAS2009T04), the National Natural Science Foundation of China (Grant Nos. 61204012 and 61274049), the Beijing Natural Science Foundation of Beijing, China (Grant No. 2112040), and the Beijing Nova Program, China (Grant No. 2010B056).
Corresponding Authors:  Zhang Yang     E-mail:  zhang_yang@semi.ac.cn

Cite this article: 

Zhang Yang (张杨), Zhang Yu-Wei (张雨溦), Wang Cheng-Yan (王成艳), Guan Min (关敏), Cui Li-Jie (崔利杰), Li Yi-Yang (李弋洋), Wang Bao-Qiang (王宝强), Zhu Zhan-Ping (朱战平), Zeng Yi-Ping (曾一平) High sensitivity Hall devices with AlSb/InAs quantum well structures 2013 Chin. Phys. B 22 057106

[1] Bennett B R, Magno R, Boos J B, Kruppa W and Ancona M G 2005 Solid-state Electron. 49 1875
[2] Ma B Y, Bergman J, Chen P, Hacker J B, Sullivan G, Nagy G and Brar B 2006 IEEE Trans. Microw. Theory Tech. 54 4448
[3] Li Y B, Zhang Y, Zhang Y W, Wang B Q, Zhu Z P and Zeng Y P 2012 Appl. Surf. Sci. 258 6571
[4] Jiang Z W, Wang W X, Gao H C, Li H, He T, Yang C L, Chen H and Zhou J M 2009 Acta Phys. Sin. 58 471 (in Chinese)
[5] Wallart X, Lastennet J, Vignaud D and Mollot F 2005 Appl. Phys. Lett. 87 043504
[6] Blank H R, Thomas M, Wong K C and Kroemer H 1996 Appl. Phys. Lett. 69 2080
[7] Li Y B, Zhang Y and Zeng Y P 2010 J. Appl. Phys. 108 044504
[8] Tuttle G, Kroemer H and English J H 1990 J. Appl. Phys. 67 3032
[9] Desplanque L, Kazzi S E, Codron J L, Wang Y, Ruterana P, Moschetti G, Grahn J and Wallart X 2012 Appl. Phys. Lett. 100 262103
[10] Li Y B, Zhang Y and Zeng Y P 2011 J. Appl. Phys. 109 073703
[11] Nguyen C, Brar B, Kroemer H and English J H 1992 J. Vac. Sci. Technol. B 10 898
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[5] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[6] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[7] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[8] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[9] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[10] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[11] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[12] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[13] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[14] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[15] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
No Suggested Reading articles found!