Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 096101    DOI: 10.1088/1674-1056/abad26
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study

Chuanxi Zhu(朱传喜), Tao Yu(于涛)
Central Iron and Steel Research Institute, Beijing 100081, China
Abstract  The strengthening effects of alloying elements Re, Ta, and W in the [110] (001) dislocation core of the γ/γ' interface are studied by first-principles calculations. From the level of energy the substitution formation energies and the migration energies of alloying elements are computed and from the level of electron the differential charge density (DCD) and the partial density of states (PDOSs) are computed. Alloying elements above are found to tend to substitute for Al sites γ' phase by analyzing the substitution formation energy. The calculation results for the migration energies of alloying elements indicate that the stability of the [110] (001) dislocation core is enhanced by adding Ta, W, and Re and the strengthening effect of Re is the strongest. Our results agree with the relevant experiments. The electronic structure analysis indicates that the electronic interaction between Re-nearest neighbor (NN) Ni is the strongest. The reason why the doped atoms have different strengthening effects in the [110] (001) dislocation core is explained at the level of electron.
Keywords:  Ni-based superalloys      dislocation structure      electronic structure      first-principles calculations  
Received:  21 June 2020      Revised:  03 August 2020      Accepted manuscript online:  07 August 2020
PACS:  61.82.Bg (Metals and alloys)  
  31.15.A- (Ab initio calculations)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
  31.15.ae (Electronic structure and bonding characteristics)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701503).
Corresponding Authors:  Tao Yu     E-mail:  ytao012345@163.com

Cite this article: 

Chuanxi Zhu(朱传喜), Tao Yu(于涛) Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study 2020 Chin. Phys. B 29 096101

[1] Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge University Press) p. 102
[2] Durand-Charre M 1997 The Microstructure of Superalloys (CRC Press)
[3] Pollock T M and Argon A S 1992 Acta Metal. Mater. 40 1
[4] Jacome L A, Nörtershäuser P, Somsen C, Dlouhý A and Eggeler G 2014 Acta Mater. 69 246
[5] Link T, Epishin A, Bruckner U and Portella P 2000 Acta Mater. 48 1981
[6] Yue Q Z, Liu L, Yang W C, Huang T W, Zhang J and Fu H Z 2019 Mater. Sci. Eng. A 742 132
[7] Zhang J X, Wang J C, Harada H and Koizumi Y 2005 Acta Mater. 53 4623
[8] Ding Q Q, Li S Z, Chen L Q, Han X D, Zhang Z, Yu Q and Li J X 2018 Acta Mater. 154 137
[9] Hantcherli M, Pettinari-Sturmel F, Viguier B, Douin J and Coujou A 2012 Scr. Mater. 66 143
[10] Luo Z P, Wu Z T and Miller D J 2003 Mater. Sci. Eng. A 354 358
[11] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B and Hu Z Q 2000 Mater. Sci. Eng. A 279 160
[12] Erickson G L 1995 JOM. 47 36
[13] Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge University Press) pp. 157-158
[14] Bagot P A J, Silk O B W, Douglas J O, Pedrazzini S, Crudden D J, Martin T L, Hardy M C, Moody M P and Reed R C 2017 Acta Mater. 125 156
[15] Tu Y Y, Mao Z G and Seidman D N 2012 Appl. Phys. Lett. 101 121910
[16] Amouyal Y, Mao Z G and Seidman D N 2010 Acta Mater. 58 5898
[17] Wu X X, Makineni S K, Liebscher C H, Dehm G, Rezaei Mianroodi J, Shanthraj P, Svendsen B, Burger D, Eggeler G, Raabe D and Gault B 2020 Nat. Commun. 11 389
[18] Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge University Press) p. 46
[19] Zhu T, Wang C Y and Gan Y 2010 Acta Mater. 58 2045
[20] Zhu C X, Yu T, Wang C Y and Wang D W 2020 Comput. Mater. Sci. 175 109586
[21] Wang C and Wang C Y 2009 Chin. Phys. B 18 3928
[22] Geng C Y, Wang C Y and Yu T 2005 Physica B 358 314
[23] Liu F H and Wang C Y 2017 RSC Adv. 7 19124
[24] Janotti A, Krčmar M, Fu C L and Reed R C 2004 Phys. Rev. Lett. 92 085901
[25] Zhang X M, Deng H Q, Xiao S F, Zhang Z, Tang J F, Deng L and Hu W Y 2014 J. Alloys Compd. 588 163
[26] Yu X X and Wang C Y 2012 Mater. Sci. Eng. A 539 38
[27] Wen M R and Wang C Y 2017 Chin. Phys. B 26 093106
[28] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[30] Du J P, Wang C Y and Yu T 2013 Modell. Simul. Mater. Sci. Eng. 21 015007
[31] Buffiere J Y and Ignat M 1995 Acta Metall. Mater. 43 1791
[32] Blöchl P E 1994 Phys. Rev. B 50 17953
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[36] Liu S H, Liu C P, Liu W Q, Zhang X N, Yan P and Wang C Y 2016 Philos. Mag. 96 2204
[37] Kohan A F, Ceder G, Morgan D and Van de Walle C G 2000 Phys. Rev. B 61 15019
[38] Liu S H, Wen M R, Li Z, Liu W Q, Yan P and Wang C Y 2017 Mater. Des. 130 157
[39] Liu S H, Li Z and Wang C Y 2017 Chin. Phys. B 26 093102
[40] Wen M R and Wang C Y 2016 RSC Adv. 6 77489
[41] Wang D W, Wang C Y, Yu T and Liu W Q 2020 Chin. Phys. B 29 043103
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[13] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[14] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!