Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 056102    DOI: 10.1088/1674-1056/ab8459
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Modification of the Peierls-Nabarro model for misfit dislocation

Shujun Zhang(张淑君), Shaofeng Wang(王少峰)
Department of Physics and Institute for Structure and Function, Chongqing University, Chongqing 400030, China
Abstract  For a misfit dislocation, the balance equations satisfied by the displacement fields are modified, and an extra term proportional to the second-order derivative appears in the resulting misfit equation compared with the equation derived by Yao et al. This second-order derivative describes the lattice discreteness effect that arises from the surface effect. The core structure of a misfit dislocation and the change in interfacial spacing that it induces are investigated theoretically in the framework of an improved Peierls-Nabarro equation in which the effect of discreteness is fully taken into account. As an application, the structure of the misfit dislocation for a honeycomb structure in a two-dimensional heterostructure is presented.
Keywords:  interfacial misfit dislocation      the energy of misfit dislocation  
Received:  07 March 2020      Revised:  25 March 2020      Accepted manuscript online: 
PACS:  61.72.Bb (Theories and models of crystal defects)  
  61.80.-x (Physical radiation effects, radiation damage)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874093).
Corresponding Authors:  Shaofeng Wang     E-mail:  sfwang@cqu.edu.cn

Cite this article: 

Shujun Zhang(张淑君), Shaofeng Wang(王少峰) Modification of the Peierls-Nabarro model for misfit dislocation 2020 Chin. Phys. B 29 056102

[1] Frank F C and Van der Merwe J H 1949 Proc. R. Soc. Lond. A 198 205
[2] Frenkel Y I and Kontorova T 1938 Zh. Eksp. Teor. Fiz. 8 1340
[3] Dundurs J and Hetenyi M 1961 J. Appl. Mech. 28 103
[4] Dundurs J 1968 J. Appl. Phys. 39 4152
[5] Peierls R 1940 Proc. Phys. Soc. 52 34
[6] Nabarro F R N 1947 Proc. Phys. Soc. 59 256
[7] Van der Merwe J H 1963 J. Appl. Phys. 34 117
[8] Yao Y, Wang T and Wang C 1999 Phys. Rev. B 59 8232
[9] Van der Merwe J H 1950 Proc. Phys. Soc. A 63 616
[10] Yu T, Xie H X and Wang C Y 2012 Chin. Phys. B 21 026104
[11] Zhang S J and Wang S F 2020 J. Appl. Phys. 127 085303
[12] Wang S F 2015 Philos. Mag. 95 3768
[13] Wang S F 2009 J. Phys. A: Math. Theor. 42 025208
[14] Zhang H L, Wang S F, Wang R and Jiao J 2010 Eur. Phys. J. B 73 489
[15] Hirth J P and Lothe J 1982 Theory of Dislocations (Krieger)
[16] Rodney D, Ventelon L, Clouet E, Pizzagalli L and Willaime F 2017 Acta Mater. 124 633
[17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Blöchl P E 1994 Phys. Rev. B 50 17953
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Wang S F, Zhang S J, Bai J H and Yao Y 2015 J. Appl. Phys. 118 244903
[21] Wang S F 2003 Phys. Lett. A 313 408
[22] Wang S F, Li S R and Wang R 2011 Eur. Phys. J. B 83 15
[1] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
No Suggested Reading articles found!