PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics |
Fang-Biao Li(李芳镖)1, Guang Ran(冉广)1, Ning Gao(高宁)2,3, Shang-Quan Zhao(赵尚泉)1, Ning Li(李宁)1 |
1 College of Energy, Xiamen University, Xiamen 361102, China;
2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China;
3 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100094, China |
|
|
Abstract Migration of He atoms and growth of He bubbles in high angle twist grain boundaries (HAGBs) in tungsten (W) are investigated by atomic simulation method. The energy and free volume (FV) of grain boundary (GB) are affected by the density and structure of dislocation patterns in GB. The migration energy of the He atom between the neighboring trapping sites depends on free volume along the migration path at grain boundary. The region of grain boundary around the He bubble forms an ordered crystal structure when He bubble grows at certain grain boundaries. The He atoms aggregate on the grain boundary plane to form a plate-shape configuration. Furthermore, high grain boundary energy (GBE) results in a large volume of He bubble. Thus, the nucleation and growth of He bubbles in twist grain boundaries depend on the energy of grain boundary, the dislocation patterns and the free volume related migration path on the grain boundary plane.
|
Received: 23 January 2019
Revised: 06 June 2019
Accepted manuscript online:
|
PACS:
|
52.65.Yy
|
(Molecular dynamics methods)
|
|
66.30.J-
|
(Diffusion of impurities ?)
|
|
61.72.Mm
|
(Grain and twin boundaries)
|
|
66.30.-h
|
(Diffusion in solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305136, 11675230, 11375242, and U1832112). |
Corresponding Authors:
Guang Ran, Ning Gao
E-mail: gran@xmu.edu.cn;ning.gao@impcas.ac.cn
|
Cite this article:
Fang-Biao Li(李芳镖), Guang Ran(冉广), Ning Gao(高宁), Shang-Quan Zhao(赵尚泉), Ning Li(李宁) Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics 2019 Chin. Phys. B 28 085203
|
[40] |
Xie H, Gao N, Xu K, Lu G H, Yu T and Yi F 2017 Acta Mater. 141 10
|
[1] |
Loarte A, Lipschultz B, Kukushkin A S, Matthews G F, Stangeby P C, Asakura N, Counsell G F, Federici G, Kallenbach A and Krieger K 2007 Nucl. Fusion 47 203
|
[41] |
Yang L, Gao F, Kurtz R J, Zu X T, Peng S M, Long X G and Zhou X S 2015 Acta Mater. 97 86
|
[2] |
Federici G, Anderl R A, Andrew P, Brooks J N, Causey R A, Coad J P, Cowgill D, Doerner R P, Haasz A A and Janeschitz G 1999 J. Nucl. Mater. 266 14
|
[42] |
Yu J N 2003 Irradiation Effect Materials (Beijing: Chemical Industry Press) pp. 453-455
|
[3] |
Federici G, Wuerz H, Janeschitz G and Tivey R 2002 Fusion. Eng. Des. 61-62 81
|
[43] |
Thorsen P A, BildeS orensen J B and Singh B N 2004 Scr. Mater. 51 557
|
[4] |
Huang S L, Ran G, Lei P H, Chen N J, Wu S H, Li N and Shen Q 2017 Nucl. Instrum. Method B 406 585
|
[5] |
Huang S L, Ran G, Lei P H, Wu S H, Chen N J and Li N 2016 Nanomaterials 6 210
|
[6] |
Trinkaus H and Ullmaier H 1994 J. Nucl. Mater. 212-215 303
|
[7] |
Hetherly J, Martinez E, Di Z F, Nastasi M and Caro A 2012 Scripta Mater. 66 17
|
[8] |
Wang J, Gao X, Gao N, Wang Z G, Cui M H, Wei K F, Yao C F, Sun J R, Li B S and Zhu Y B 2015 J. Nucl. Mater. 457 182
|
[9] |
Elatwani O, Hinks J A, Greaves G, Gonderman S, Qiu T, Efe M and Allain J P 2015 Sci. Rep. 4 4716
|
[10] |
Xia M, Guo H Y, Dai Y, Yan Q Z, Guo L P, Li T C, Qiao Y and Ge C C 2018 Chin. Phys. B 27 073103
|
[11] |
El-Atwani O, Gonderman S, Suslov S, Efe M, Temmerman G D, Morgan T, Bystrov K, Hattar K and Allain J P 2015 Fusion. Eng. 93 9
|
[12] |
Miyamoto M, Mikami S, Nagashima H, Iijima N, Nishijima D, Doerner R P, Yoshida N, Watanabe H, Ueda Y and Sagara A 2015 J. Nucl. Mater. 463 333
|
[13] |
Li X C, Shu X, Tao P, Yu Y, Niu G J, Xu Y, Gao F and Luo G N 2014 J. Nucl. Mater. 455 544
|
[14] |
Kobayashi R, Hattori T, Tamura T and Ogata S 2015 J. Nucl. Mater. 463 1071
|
[15] |
Wang X Y, Gao N, Setyawan W, Xu B, Liu W and Wang Z G 2017 J. Nucl. Mater. 491 154
|
[16] |
Bai X M, Voter A F, Hoagl, R G, Nastasi M and Uberuaga B P 2010 Science 327 1631
|
[17] |
Chen N, Niu L L, Zhang Y, Shu X, Zhou H B, Jin S, Ran G, Lu G H and Gao F 2016 Sci. Rep. 6 36955
|
[18] |
Valles G, González C, Martin-Bragado I, Iglesias R, Perlado J M and Rivera A 2015 J. Nucl. Mater. 457 80
|
[19] |
Di Z, Bai X M, Wei Q, Won J, Hoagl, R G, Wang Y, Misra A, Uberuaga B P and Nastasi M 2011 Phys. Rev. B 84 052101
|
[20] |
Yang J B, Osetsky Y N, Stoller R E, Nagai Y and Hasegawa M 2012 Scripta Mater. 66 761
|
[21] |
Bulatov V V and Cai W 2002 Phys. Rev. Lett. 89 115501
|
[22] |
Wang X X, Niu L and Wang S 2017 J. Nucl. Mater. 487 158
|
[23] |
Feng Y X, Shang J X, Liu Z H and Lu G H 2015 Appl. Surf. Sci. 357 262
|
[24] |
Feng Y X, Shang J X and Lu G H 2017 J. Nucl. Mater. 487 200
|
[25] |
Hirel 2015 Phys. Comm. 197 212
|
[26] |
Yang J B, Nagai Y, Hasegawa M and Osetsky Y N 2010 Philos. Mag. 90 991
|
[27] |
Gao N, Ghoniem A, Gao X, Luo P, Wei K and Wang Z 2014 J. Nucl. Mater. 444 200
|
[28] |
Plimpton S 1995 J. Comput. Phys. 117 1
|
[29] |
Juslin N and Wirth B D 2013 J. Nucl. Mater. 432 61
|
[30] |
Wood M A and Thompson A P 2017 arXiv: 1702.07042 [physics.comp-ph]
|
[31] |
Hoover W G 1985 Phys. Rev. A 31 1695
|
[32] |
Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
|
[33] |
Li J 2003 Modell. Simul. Mater. Sci. Eng. 11 173
|
[34] |
Liu X Y, Andersson D A 2015 J. Nucl. Mater. 462 8
|
[35] |
Zhao S Q, Ran G, Li F B, Deng H Q and Gao F 2019 J. Nucl. Mater. 521 13
|
[36] |
He W H, Gao X, Wang D, Gao N, Cui M H, Pang L and Wang Z G 2018 Comput. Mater. Sci. 148 224
|
[37] |
Xie H, Xu K, Lu G H, Yu T and Yin F 2017 J. Nucl. Mater. 484 270
|
[38] |
Misra A, Demkowicz M J, Zhang X, Hoagl and R G 2007 JOM 59 62
|
[39] |
Wang J L, Niu L L, Shu X L and Zhang Y 2015 Nucl. Fusion 55 092003
|
[40] |
Xie H, Gao N, Xu K, Lu G H, Yu T and Yi F 2017 Acta Mater. 141 10
|
[41] |
Yang L, Gao F, Kurtz R J, Zu X T, Peng S M, Long X G and Zhou X S 2015 Acta Mater. 97 86
|
[42] |
Yu J N 2003 Irradiation Effect Materials (Beijing: Chemical Industry Press) pp. 453-455
|
[43] |
Thorsen P A, BildeS orensen J B and Singh B N 2004 Scr. Mater. 51 557
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|