Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057104    DOI: 10.1088/1674-1056/22/5/057104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Energy transfer and correlation dynamics in a three-quasi-spin-pigment system

Zhang Yin-Ping (张银苹), Li Hong-Rong (李宏荣), Fang Ai-Ping (方爱萍), Chen Hao (陈浩), Li Fu-Li (李福利)
Department of Applied Physics, Xi'an Jiaotong University, Xian 710049, China
Abstract  In this paper, the effects of quantum and classical correlations on the excitation energy transfer in a three-quasi-spin-pigment system are investigated. We first study the dependence of the energy transfer efficiency on various initial correlations of the donor pigments, and find that the initial concurrence is crucial to the efficiency no matter whether the initial states are pure or mixed. We then demonstrate the dynamics of correlations of the system and observe the appearance of sudden death of quantum correlations in the donor pigments. The relation between the energy transfer efficiency and the dynamics of correlations in the donor pigments is also discussed.
Keywords:  energy transfer      correlation      quasi-spin-pigment system  
Received:  28 November 2012      Revised:  05 January 2013      Accepted manuscript online: 
PACS:  71.35.-y (Excitons and related phenomena)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174233) and the National Basic Research Program of China (Grant No. 2011CB311807).
Corresponding Authors:  Li Hong-Rong     E-mail:  hrli@mail.xjtu.edu.cn

Cite this article: 

Zhang Yin-Ping (张银苹), Li Hong-Rong (李宏荣), Fang Ai-Ping (方爱萍), Chen Hao (陈浩), Li Fu-Li (李福利) Energy transfer and correlation dynamics in a three-quasi-spin-pigment system 2013 Chin. Phys. B 22 057104

[1] Born M and Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press)
[2] Green B R and Parson W W 2003 Light-Harvesting Antennas in Photosynthesis (New York: Kluwer)
[3] Fleming G R and Grondelle R V 1994 Phys. Today 47 48
[4] Lee H, Cheng Y C and Fleming G R 2007 Science 316 1462
[5] Engel G S, Calhoun T R, Read E L, Ahn T K, Mancal T, Cheng Y C, Blankenship R E and Fleming 2007 Nature 446 782
[6] Sarovar M, Ishizaki A, Fleming G R and Whaley K B 2010 Nature Phys. 6 462
[7] Ritz T, Thalau P, Philips J B, Wiltschko R and Wiltschko W 2004 Nature 429 177
[8] Cai J M, Guerreschi G G and Briegel H J 2010 Phys. Rev. Lett. 104 220502
[9] Gauger E M, Rieper E, Morton J J L, Benjamin S C and Vedral V 2011 Phys. Rev. Lett. 106 040503
[10] Brookes J C, Hartoutsiou F, Horsfield A P and Stoneham A M 2007 Phys. Rev. Lett. 98 038101
[11] Franco M I, Turin L, Mershin A and Skoulakis E M C 2011 Proc. Nat. Acad. Sci. USA 108 3797
[12] Brixner T, Stenger J, Vaswani H M, Cho M, Blankenship R E and Fleming G R 2005 Nature 434 625
[13] Collini E and Scholes G D 2009 Science 323 369
[14] Ishizaki A and Fleming G R 2009 Proc. Nat. Acad. Sci. USA 106 17255
[15] Adolphs J and Renger T 2006 Biophys. J. 91 2778
[16] Wang H, Yu H C, Lin W Z, Huang J W and Ji L N 2006 Chin. Phys. B 15 2347
[17] Olaya-Castro A, Lee C F, Olsen F F and Johnson N F 2008 Phys. Rev. B 78 085115
[18] Scholes G D 2010 Nature Phys. 6 402
[19] Bradler K, Wilde M M, Vinjanampathy S and Uskov D B 2010 Phys. Rev. A 82 062310
[20] Mohseni M, Rebentrost P, Lloyd S and Guzik A A 2008 J. Chem. Phys. 129 174106
[21] Rebentrost P, Mohseni M, Kassal I, Lloyd S and Guzik A A 2009 New J. Phys. 11 033003
[22] Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2009 J. Chem. Phys. 131 105106
[23] Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2010 Phys. Rev. A 81 062346
[24] Yang S, Xu D Z, Song Z and Sun C P 2010 J. Chem. Phys. 132 234501
[25] Liao J Q, Huang J F, Kuang L M and Sun C P 2010 Phys. Rev. A 82 052109
[26] Carmichael H 1993 An Open Systems Approach to Quantum Optics (Berlin: Springer-Verlag)
[27] DiFidio C and Vogel W 2008 Phys. Rev. A 78 032334
[28] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[29] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[30] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[31] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[32] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[33] Yu T and Eberly J H 2009 Science 323 598
[34] Briegel H J and Popescu S 2009 arXiv/quant-ph 0806.4552
[1] Investigating the characteristic delay time in the leader-follower behavior in children single-file movement
Shu-Qi Xue(薛书琦), Nirajan Shiwakoti, Xiao-Meng Shi(施晓蒙), and Yao Xiao(肖尧). Chin. Phys. B, 2023, 32(2): 028901.
[2] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[3] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[4] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[5] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[6] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[7] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[8] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[9] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[10] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[11] Cross correlation mediated by distant Majorana zero modes with no overlap
Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇). Chin. Phys. B, 2022, 31(1): 017402.
[12] An optimized cluster density matrix embedding theory
Hao Geng(耿浩) and Quan-lin Jie(揭泉林). Chin. Phys. B, 2021, 30(9): 090305.
[13] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[14] HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields
Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威). Chin. Phys. B, 2021, 30(7): 073201.
[15] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
No Suggested Reading articles found!