Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 048102    DOI: 10.1088/1674-1056/22/4/048102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

InAs/GaAs submonolayer quantum-dot superluminescent diodes with active multimode interferometer configuration

Li Xin-Kun (李新坤), Jin Peng (金鹏), Liang De-Chun (梁德春), Wu Ju (吴巨), Wang Zhan-Guo (王占国)
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  With a chirped InAs/GaAs SML-QD (quantum dot) structure serving as the active region, the superluminescent diodes emitting at wavelength of around 970 nm are fabricated. By using an active multimode interferometer configuration, these devices exhibit high continue-wave output powers from the narrow ridge waveguides. At continue-wave injection current of 800 mA, an output power of 18.5 mW, and the single Gaussian-like emission spectrum centred at 972 nm with a full width at half maximum of 18 nm are obtained.
Keywords:  quantum dot      submonolayer      self-assembled      superluminescent diode  
Received:  07 June 2012      Revised:  18 October 2012      Accepted manuscript online: 
PACS:  81.07.Ta (Quantum dots)  
  81.16.Dn (Self-assembly)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB604904) and the National Natural Science Foundation of China (Grant Nos. 60976057, 61274072, and 60876086).
Corresponding Authors:  Jin Peng     E-mail:  pengjin@semi.ac.cn

Cite this article: 

Li Xin-Kun (李新坤), Jin Peng (金鹏), Liang De-Chun (梁德春), Wu Ju (吴巨), Wang Zhan-Guo (王占国) InAs/GaAs submonolayer quantum-dot superluminescent diodes with active multimode interferometer configuration 2013 Chin. Phys. B 22 048102

[1] Lee B 2003 Opt. Fiber Technol. 9 57
[2] Schmitt J M 1999 IEEE J. Sel. Topics Quantum Electron. 5 1205
[3] Zotter S, Pircher M, Torzicky T, Bonesi M, Götzinger E, Leitgeb R A and Hitzenberger C K 2011 Opt. Express 19 1217
[4] Wang K, Zeng Y, Ding Z H, Meng J, Shi G H and Zhang Y D 2010 Acta Phys. Sin. 59 2471 (in Chinese)
[5] Liang Y M, Zhou D C, Meng F Y and Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese)
[6] Lü X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
[7] Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[8] Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[9] Rossetti M, Li L H, Markus A, Fiore A, Occhi L, Vélez C, Mikhrin S, Krestnikov I and Kovsh A 2007 IEEE J. Quantum Electron. 43 676
[10] Lü X Q, Liu N, Jin P and Wang Z G 2008 IEEE Photon. Technol. Lett. 20 1742
[11] Zhang Z Y, Jiang Q, Hopkinson M and Hogg R A 2010 Opt. Express 18 7055
[12] Zhang Z Y, Hogg R A, Lü X Q and Wang Z G 2010 Adv. Opt. Photon. 2 201
[13] Jiang Q, Zhang Z Y, Hopkinson M and Hogg R A 2010 Electron. Lett. 46 295
[14] Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
[15] Haffouz S, Barrios P J, Normandin R, Poitras D and Lu Z 2012 Opt. Lett. 37 1103
[16] Du G T, Devane G, Stair K A, Wu S L, Chang R P H, Zhao Y S, Sun Z Z, Liu Y, Jiang X Y and Han W H 1998 IEEE Photon. Technol. Lett. 10 57
[17] Greenwood P D L, Childs D T D, Groom K M, Stevens B J, Hopkinson M and Hogg R A 2009 IEEE J. Sel. Top. Quantum Electron. 15 757
[18] Li X K, Jin P, An Q, Wang Z C, Lü X Q, Wei H, Wu J, Wu J and Wang Z G 2012 Opt. Express 20 936
[19] Zang Z G, Minato T, Navaretti P, Hinokuma Y, Duelk M, Velez C and Hamamoto K 2010 IEEE Photon. Technol. Lett. 20 721
[20] Li X K, Liang D C, Jin P, An Q, Wei H, Wu J and Wang Z G 2012 Chin. Phys. B 21 028102
[21] Zhang M, Krüger A C, Groothoff N, Balle T and Kristensen M 2011 Opt. Lett. 36 3058
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[13] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[14] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!