INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Tuning nano-pillar array for enhancing the photoluminescence extraction efficiency of GaN-based light-emitting diodes |
Chen Xia (陈夏), Liang Zhu-Hong (梁柱洪), Chen Zhan-Xu (陈湛旭), Yang Wei-Ming (杨伟明), Chen Tu-Fu (陈土福), Jin Chong-Jun (金崇君), Zhang Bai-Jun (张佰君) |
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract We demonstrate the fabrication of hexagonal nano-pillar arrays at the surface of GaN-based light-emitting diodes (LEDs) by nanosphere lithography. By varying the oxygen plasma etching time, we could tune the size and shape of the pillar. The nano-pillar has a truncated cone shape. The nano-pillar array serves as a gradual effective refractive index matcher, which reduces the reflection and increases light cone. It is found that the patterned surface absorbs more pumping light. To compare extraction efficiencies of LEDs, it is necessary to normalize the photoluminescence power spectrum with total absorption rate under fixed pumping power, then we could obtain the correct enhancement factor of the photoluminescence extraction efficiency and optimized structure. The highest enhancement factor of the extraction efficiency is 10.6.
|
Received: 18 July 2012
Revised: 12 October 2012
Accepted manuscript online:
|
PACS:
|
81.05.-t
|
(Specific materials: fabrication, treatment, testing, and analysis)
|
|
85.30.-z
|
(Semiconductor devices)
|
|
42.55.Tv
|
(Photonic crystal lasers and coherent effects)
|
|
Fund: Project supported by the the National Natural Science Foundation of China (Grant Nos. 10774195, U0834001, 10974263, 11174374, and 10725420), the Key Program of Ministry of Education, China (Grant No. 309024), the New Century Excellent Talents in University, and the National Basic Research Program of China (Grant No. 2010CB923200). |
Corresponding Authors:
Jin Chong-Jun, Zhang Bai-Jun
E-mail: jinchjun@mail.sysu.edu.cn; zhbaij@mail.sysu.edu.cn
|
Cite this article:
Chen Xia (陈夏), Liang Zhu-Hong (梁柱洪), Chen Zhan-Xu (陈湛旭), Yang Wei-Ming (杨伟明), Chen Tu-Fu (陈土福), Jin Chong-Jun (金崇君), Zhang Bai-Jun (张佰君) Tuning nano-pillar array for enhancing the photoluminescence extraction efficiency of GaN-based light-emitting diodes 2013 Chin. Phys. B 22 048101
|
[1] |
Horng R H, Tsai Y L, Wu T M, Wuu D S and Chao C H 2009 IEEE J. Sel. Top. Quantum Electron. 15 1327
|
[2] |
Lee Y C, Ni C H and Chen C Y 2010 Opt. Express 18 A489
|
[3] |
Schubert E F and Kim J K 2005 Science 308 1274
|
[4] |
Steigerwald D A, Bhat J C, Collins D, Fletcher R M, Holcomb M O, Ludowise M J, Martin P S and Rudaz S L 2002 IEEE J. Sel. Top. Quantum Electron. 8 310
|
[5] |
Schubert E F 2006 Light-Emitting Diodes 2nd edn. (Cambridge: Cambridge University Press)
|
[6] |
Huang C Y, Ku H M, Liao C Z and Chao S 2010 Opt. Express 18 10674
|
[7] |
Lai W C, Yang Y Y, Peng L C, Yang S W, Lin Y R and Sheu J K 2010 Appl. Phys. Lett. 97 081103
|
[8] |
Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P and Nakamura S 2004 Appl. Phys. Lett. 84 855
|
[9] |
Kim T S, Kim S M, Jang Y H and Jung G Y 2007 Appl. Phys. Lett. 91 171114
|
[10] |
Byeon K J, Hong E J, Park H, Yang K Y, Baek J H, Jhin J, Hong C H, Kim H G and Lee H 2009 Semicond. Sci. Technol. 24 105004
|
[11] |
Park H, Byeon K J, Yang K Y, Cho J Y and Lee H 2010 Nanotechnology 21 355304
|
[12] |
Sim J I, Lee B G, Yang J W, Yoon H D and Kim T G 2011 Jpn. J. Appl. Phys. 50 102101
|
[13] |
An H M, Sim J I, Shin K S, Sung Y M and Kim T G 2012 IEEE J. Quantum Electron. 48 891
|
[14] |
Liu S H, Feng Y C, Niu H B and Li Y 2006 Chin. Phys. B 15 702
|
[15] |
Li Y, Zheng R S, Feng Y C, Liu S H and Niu H B 2006 Chin. Phys. 15 1009
|
[16] |
Baik K H, Min B K, Kim J Y, Kim H K, Sone C, Park Y and Kim H 2010 J. Appl. Phys. 108 063105
|
[17] |
Lin C C and Lee C T 2010 IEEE Photon. Technol. Lett. 22 1132
|
[18] |
Kao C C, Su Y K, Lin C L and Chen J J 2010 Appl. Phys. Lett. 97 023111
|
[19] |
Huang H W, Huang J K, Kuo S Y, Lee K Y and Kuo H C 2010 Appl. Phys. Lett. 96 263115
|
[20] |
Kim D H, Cho C O, Roh Y G, Jeon H, Park Y S, Cho J, Im J S, Sone C, Park Y, Choi W J and Park Q H 2005 Appl. Phys. Lett. 87 203508
|
[21] |
Kim S H, Lee K D, Kim J Y, Kwon M K and Park S J 2007 Nanotechnology 18 055306
|
[22] |
Ke M Y, Wang C Y, Chen L Y, Chen H H, Chiang H L, Cheng Y W, Hsieh M Y, Chen C P and Huang J J 2009 IEEE J. Sel. Top. Quantum Electron. 15 1242
|
[23] |
Kempa K, Kimball B, Rybczynski J, Huang Z P, Wu P F, Steeves D, Sennett M, Giersig M, Rao D, Carnahan D L, Wang D Z, Lao J Y, Li W Z and Ren Z F 2003 Nano Lett. 3 13
|
[24] |
Song Y M and Lee Y T 2009 Proceedings of 9th International Conference on Numerical Simulation of Optoelectronic Devices p. 103
|
[25] |
Li Y, Zhang J and Yang B 2010 Nano Today 5 117
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|