|
|
The collision energy effect on the stereodynamics of the Ca + HCl→CaCl +H reaction |
Wang Li-Zhi (王立志)a b, Yang Chuan-Lu (杨传路)b, Liang Jing-Juan (梁景娟)a, Duan Li-Li (段莉莉)a, Zhang Qing-Gang (张庆刚)a |
a College of Physics and Electronics, Shandong Normal University, Jinan 250014, China; b School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China |
|
|
Abstract The stereodynamics of the reaction of Ca+HCl is calculated at three different collision energies based on the potential energy surface [Verbockhaven G et al. 2005 J. Chem. Phys. 122 204307] by using the quasi-classical trajectory theory. The polarization-dependent differential cross sections (PDDCSs) (2π/σ)(dσ 00/dω t), (2π/σ)(dσ 20/dω t), (2π/σ)(dσ 22+/dω t), (2π/σ)(dσ 21-/dω t) and the distributions of P(θr), P(φr), and P(θr ,φr) are calculated. The results indicate that the rotational polarization of product CaCl presents different characteristics for the different collision energies and the effects of collision energy on the vector potential, including the alignment, orientation, and PDDCSs, are not obvious.
|
Received: 13 July 2012
Revised: 07 September 2012
Accepted manuscript online:
|
PACS:
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
34.50.Lf
|
(Chemical reactions)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174117, 10974078, 11274205, 11274206, 11147026, and 31200545). |
Corresponding Authors:
Yang Chuan-Lu
E-mail: scuycl@gmail.com
|
Cite this article:
Wang Li-Zhi (王立志), Yang Chuan-Lu (杨传路), Liang Jing-Juan (梁景娟), Duan Li-Li (段莉莉), Zhang Qing-Gang (张庆刚) The collision energy effect on the stereodynamics of the Ca + HCl→CaCl +H reaction 2013 Chin. Phys. B 22 043101
|
[1] |
Li H, Zheng B and Meng Q T 2012 Acta Phys. Sin. 61 153401 (in Chinese)
|
[2] |
Zong F J, Han B R and Ji F 2012 Chin. Phys. B 21 093103
|
[3] |
Xiao J, Yang C L and Wang M S 2012 Chin. Phys. B 21 043101
|
[4] |
Chen X Q, Wang M S and Yang C L 2012 Chin. Phys. B 21 023402
|
[5] |
Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
|
[6] |
Xu Y, Zhao J, Wang J, Liu F and Meng Q T 2010 Acta Phys. Sin. 59 3885 (in Chinese)
|
[7] |
Xiao J, Yang C L, Li X H, Wang M S and Ma X G 2011 Chin. Phys. Lett. 28 013101
|
[8] |
Liang J J, Liu X G, Xu W W, Kong H and Zhong Q G 2010 THEOCHEM 942 93
|
[9] |
Magee J L 1940 J. Chem. Phys. 8 687
|
[10] |
Mims A, Lin S M and Hem R R 1972 J. Chem. Phys. 57 3099
|
[11] |
Torres-Filho A and Pruett J G 1982 J. Chem. Phys. 77 1774
|
[12] |
Cruse H W, Dagdigian P J and Zare R N 1973 Faraday Discuss. Chem. Soc. 55 277
|
[13] |
Pruett J G and Zare R N 1976 J. Chem. Phys. 64 1774
|
[14] |
Gupta A, Perry D S and Zare R N 1980 J. Chem. Phys. 76 237
|
[15] |
Zare R N 1979 Faraday Discuss. Chem. Soc. 67 7
|
[16] |
Feldman D, Lengel R and Zare R N 1977 Chem. Phys. Lett. 52 413
|
[17] |
Cai M Q, Zhang L, Tang B Y, Chen M D, Yang G W and Han K L 2000 Chem. Phys. 283 255
|
[18] |
Noda C, Mckillop J S, Johnson M A, Waldeck J R and Zare R N 1986 J. Chem. Phys. 85 856
|
[19] |
Zhao D and Zare R N 1992 J. Chem. Phys. 97 6208
|
[20] |
Tsekouras A A, Leach C A, Kalogerakis K S and Zare R N 1992 J. Chem. Phys. 97 720
|
[21] |
Teule J M, Jassen M H N, Bulthuis J and Stolte S 1999 J. Chem. Phys. 110 10792
|
[22] |
Altkom R, Bartoszek F E, Haven J D, Han G C, Perry D S and Zare R N 1983 Chem. Phys. Lett. 98 212
|
[23] |
Karny Z, Estler R C and Zare R N 1979 J. Chem. Phys. 69 5199
|
[24] |
Gupta A, Perry D S and Zare R N 1980 J. Chem. Phys. 72 6250
|
[25] |
Karny Z and Zare R N 1978 J. Chem. Phys. 68 3360
|
[26] |
Soep B, Whitham C J, Keller A and Visticot J P 1991 Faraday Discuss. Chem. Soc. 91 191
|
[27] |
Soep B, Abbés S, Keller A and Visticot J P 1992 J. Chem. Phys. 96 440
|
[28] |
Keller A, Lawruszczuk R, Soep B and Visticot J P 1996 J. Chem. Phys. 105 4556
|
[29] |
Visticot J P, Soep B and Whitham C J 1988 J. Phys. Chem. 92 4574
|
[30] |
Verbockhaven G, Sanz C, Groenenboom G C and Roncero O 2005 J. Chem. Phys. 122 204307
|
[31] |
Wang L Z, Yang C L, Liang J J, Xiao J and Zhang Q G 2011 Chin. J. Chem. Phys. 24 686
|
[32] |
Wang L Z, Yang C L, Liang J J, Duan L L and Zhang Q G 2012 J. Chem. Phys. 405 181
|
[33] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[34] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[35] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[36] |
Zhang X and Han K L 2006 Int. J. Quantum Chem. 106 1815
|
[37] |
Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
|
[38] |
Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
|
[39] |
Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
|
[40] |
Ma J J, Chen M D, Cong S L and Han K L 2006 Chem. Phys. 327 529
|
[41] |
Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 286
|
[42] |
Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|