CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals |
Li Dong-Xiang (李东翔)a b, Qin Xiu-Bo (秦秀波)c, Zheng Li-Rong (郑黎荣)d, Li Yu-Xiao (李玉晓)b, Cao Xing-Zhong (曹兴忠)a, Li Zhuo-Xin (李卓昕)a, Yang Jing (杨静)a, Wang Bao-Yi (王宝义)a |
a Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
b School of Physical Engineering, Zhengzhou University, Zhengzhou 450001, China;
c Research Center for Application of Nuclear Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
d Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO2 single crystals when magnetic field is applied parallel to the sample plane. By combining X-ray absorption near edge structure spectrum and positron annihilation lifetime spectroscopy, Ti3+–VO defect complexes (or clusters) have been identified in annealed crystals at high vacuum. We elucidate that the unpaired 3d electrons in Ti3+ ions provide the observed room-temperature ferromagnetism. Besides, excess oxygen ions in TiO2 lattice could induce a number of Ti vacancies which increase magnetic moments obviously.
|
Received: 05 September 2012
Revised: 25 October 2012
Accepted manuscript online:
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
71.55.-i
|
(Impurity and defect levels)
|
|
75.20.Hr
|
(Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)
|
|
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61006066) and the National Natural Science Foundation of China (Grant No. 11175191). |
Corresponding Authors:
Qin Xiu-Bo
E-mail: qinxb@ihep.ac.cn
|
Cite this article:
Li Dong-Xiang (李东翔), Qin Xiu-Bo (秦秀波), Zheng Li-Rong (郑黎荣), Li Yu-Xiao (李玉晓), Cao Xing-Zhong (曹兴忠), Li Zhuo-Xin (李卓昕), Yang Jing (杨静), Wang Bao-Yi (王宝义) Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals 2013 Chin. Phys. B 22 037504
|
[1] |
Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
|
[2] |
Pearton S J, Heo W H, Ivill M, Norton D P and Steiner T 2004 Semicond. Sci. Technol. 19 R59
|
[3] |
Li T J, LI G P, Gao X X and Chen J S 2010 Chin. Phys. Lett. 27 087501
|
[4] |
Ouyang Q Z, Ye Z Q, Lei M S, Ouyang C Y, Xiong Z H and Liu G D 2006 Chin. Phys. B 15 1585
|
[5] |
Zhao Y H, Cheng L Z, He K Y, Zhao H H, Rong C B and Xu M 2002 Chin. Phys. B 11 77
|
[6] |
Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S Y and Koinuma H 2001 Science 29 854
|
[7] |
Xu X G, Jiang Y, Yu G H, Liu Q L and Geng W T 2008 Phys. Lett. A 372 2098
|
[8] |
Janisch R and Spaldin N A 2006 Phys. Rev. B 73 035201
|
[9] |
Mallia G and Harrison N M 2007 Phys. Rev. B 75 165201
|
[10] |
Du X S, Li Q X, Su H B and Yang J L 2006 Phys. Rev. B 74 233201
|
[11] |
Griffin K A, Varela M, Pennycook S J, Pakhomov A B and Krishnan K M 2006 J. Appl. Phys. 99 08M114
|
[12] |
Bryan J D, Santangelo S A, Keveren S C and Gamelin D R 2005 J. Am. Chem. Soc. 127 15568
|
[13] |
Kim D H, Yang J S, Lee K W, Bu S D, Noh T W, Oh S J, Kim Y W, Chung J S, Tanaka H, Lee H Y and Kawai T 2002 Appl. Phys. Lett. 23 2421
|
[14] |
Venkatesan M, Fitzgerald C B and Coey J M D 2004 Nature 430 630
|
[15] |
Hong N H, Sakai J, Poirot N and Brize V 2006 Phys. Rev. B 73 132404
|
[16] |
Yoon S D, Chen Y, Yang A, Goodrich T L, Zuo X, Arena D A, Ziemer K, Vittoria C and Harris V G 2006 J. Phys.: Condens. Matter 18 L355
|
[17] |
Pammaraju C D and Sanvito S 2005 Phys. Rev. Lett. 94 217205
|
[18] |
Lu J B, Yang K S, Jin H, Dai Y and Huang B B 2011 J. Solid State Chem. 184 1148
|
[19] |
Singhal R K, Kumar S, Kumari P, Xing Y T and Saitovitch E 2011 Appl. Phys. Lett. 98 092510
|
[20] |
Berry A J, Walker A M, Hermann J, O'Neill H S C, Foran G J and Gale J D 2007 Chem. Geol. 242 176
|
[21] |
Chen L X, Rajh T, Wang Z Y and Thurnauer M C 1997 J. Phys. Chem. B 101 10688
|
[22] |
Wagemaker M, Lutzenkirchen-Hecht D, Keil P, van Well A A and Frahmb R 2003 Physica B 336 118
|
[23] |
He J, Behera R K, Finnis M W, Li X, Dickey E C, Phillpot S R and Sinnott S B 2007 Acta Materialia 55 4325
|
[24] |
Nowotny M K, Bak T, Nowotny J and Sorrell C C 2005 Phys. Status Solidi (b) 242 R88
|
[25] |
Liu C M, Xiang X, Zhang Y, Jiang Y and Zu X T 2011 Chin. Phys. Lett. 28 127201
|
[26] |
Zhou S Q, Čižmaŕ E, Potzger K, Krause M, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J and Schmidt H 2009 Phys. Rev. B 79 113201
|
[27] |
von Oertzen G U and Gerson A R 2007 J. Phys. Chem. Solids 68 324
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|