Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 034102    DOI: 10.1088/1674-1056/22/3/034102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Manipulating surface plasmon waves by transformation optics: Design examples of beam squeezer, bend, and omnidirectional absorber

Yu Zhen-Zhong (余振中), Feng Yi-Jun (冯一军), Wang Zheng-Bin (王正斌), Zhao Jun-Ming (赵俊明), Jiang Tian (姜田)
Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  We present several design examples of how to apply the transformation optics and curved space under coordinate transformation to manipulating the surface plasmon waves in a controlled manner. We demonstrate in detail the design procedure of the plasmonic wave squeezer, in-plane bend and omnidirectional absorber. We show that the approximation method of modifying only the dielectric material of a dielectric–metal surface of the plasmonic device could lead to acceptable performance, which facilitates the fabrication of the device. The functionality of the proposed plasmonic device is verified using three-dimensional full-wave electromagnetic simulations. Aiming at practical realization, we also show the design of plasmonic in-plane bend and omnidirectional absorber by an alternative transformation scheme, which results in simple device structure with a tapered isotropic dielectric cladding layer on the top of the metal surface that can be fabricated with the existing nanotechnology.
Keywords:  transformation optics      surface plasmon polaritons      metamaterial  
Received:  07 July 2012      Revised:  03 September 2012      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60990322, 60990320, 60801001, and 61101011) and the Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20100091110036).
Corresponding Authors:  Feng Yi-Jun     E-mail:  yjfeng@nju.edu.cn

Cite this article: 

Yu Zhen-Zhong (余振中), Feng Yi-Jun (冯一军), Wang Zheng-Bin (王正斌), Zhao Jun-Ming (赵俊明), Jiang Tian (姜田) Manipulating surface plasmon waves by transformation optics: Design examples of beam squeezer, bend, and omnidirectional absorber 2013 Chin. Phys. B 22 034102

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Leonhardt U 2006 Science 312 1777
[3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[4] Ma H, Qu S B, Xu Z, Zhang J Q and Wang J F 2009 Chin. Phys. B 18 1850
[5] Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L and Zhou H 2010 Chin. Phys. B 19 064101
[6] Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R and Pendry J B 2008 Photon. Nanostruct. 6 87
[7] Mei Z L and Cui T J 2009 J. Appl. Phys. 105 104913
[8] Kwon D H and Werner D H 2010 IEEE Antennas Propag. Mag. 52 24
[9] Rahm M, Cummer S A, Schurig D, Pendry J B and Smith D R 2008 Phys. Rev. Lett. 100 063903
[10] Xu X, Feng Y and Jiang T 2008 New J. Phys. 10 115027
[11] Tichit P H, Burokur S N and de Lustrac A 2010 Opt. Express. 18 767
[12] Narimanova E E and Kildisheva A V 2009 Appl. Phys. Lett. 95 041106
[13] Genov D A, Zhang S and Zhang X 2009 Nat. Phys. 5 687
[14] Cheng Q, Cui J T, Jiang W X and Cai B G 2010 New J. Phys. 12 063006
[15] Chen H Y, Miao R X and Li M 2010 Opt. Express 18 15183
[16] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Woff P A 1998 Nature. 391 667
[17] Raether H 1988 Surface Plasmons: on Smooth and Rough Surfaces and on Gratings (Berlin: Springer) pp. 21-30
[18] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photonic. 4 83
[19] Barnes W L, Dereux A and Ebbesen T W 2003 Nature. 424 824
[20] Kadic M, Guenneau S and Enoch S 2010 Opt. Express 18 12027
[21] Huidobro P A Nesterov M L, Martín-Moreno L and García-Vidal F J 2010 Nano Lett. 10 1985
[22] Liu Y, Zentgraf T, Bartal G and Zhang X 2010 Nano Lett. 10 1991
[23] Huidobro P A Nesterov M L, Martín-Moreno L and García-Vidal F J 2011 New J. Phys. 13 033011
[24] Muamer K, Guillaume D, Chang T M, Guenneau S and Enoch S 2011 Photon. Nanostruct. 9 302
[25] Zentgraf T, Liu Y, Mikkelsen M H, Valentine J and Zhang X 2011 Nat. Nanotechnol. 6 151
[26] Sönnichsen C 2001 Plasmons in Metal Nanostructures (PhD Thesis) (München: Ludwig Maximilians Universtät)
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[6] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[7] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[8] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[9] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[10] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[11] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[12] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[13] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[14] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[15] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
No Suggested Reading articles found!