Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117303    DOI: 10.1088/1674-1056/22/11/117303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermoelectric transport through a quantum dot with a magnetic impurity

Yu Zhen (于震)a, Guo Yu (郭宇)b, Zheng Jun (郑军)a c, Chi Feng (迟锋)b
a College of Engineering, Bohai University, Jinzhou 121013, China;
b School of Mathematics and Physics, Bohai University, Jinzhou 121013, China;
c State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We study the thermoelectric effect in a small quantum dot with a magnetic impurity in the Coulomb blockade regime. The electrical conductance, thermal conductance, thermopower, and the thermoelectrical figure of merit (FOM) are calculated by using Green’s function method. It is found that the peaks in the electrical conductance are split by the exchange coupling between the electron entering into the dot and the magnetic impurity inside the dot, accompanied by the decrease in the height of peaks. As a result, the resonances in the thermoelectric quantities, such as the thermal conductance, thermopower, and the FOM, are all split, opening some effective new working regions. Despite of the significant reduction in the height of the electrical conductance peaks induced by the exchange coupling, the values of the FOM and the thermopower can be as large as those in the case of zero exchange coupling. We also find that the thermoelectric efficiency, characterized by the magnitude of the FOM, can be enhanced by adjusting the left–right asymmetry of the electrode–dot coupling or by optimizing the system’s temperature.
Keywords:  quantum dot      thermoelectric effect      magnetic impurity  
Received:  07 April 2013      Revised:  24 May 2013      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61274101) and the SKLSM (Grant No. CHJG200901).
Corresponding Authors:  Chi Feng     E-mail:  chifeng@semi.ac.cn

Cite this article: 

Yu Zhen (于震), Guo Yu (郭宇), Zheng Jun (郑军), Chi Feng (迟锋) Thermoelectric transport through a quantum dot with a magnetic impurity 2013 Chin. Phys. B 22 117303

[1] Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nature 407 57
[2] LeRoy B J, Lemay S G, Kong J and Dekker C 2001 Nature 432 371
[3] Venkatasubramanian R, Siivola E, Colpitts T and O’Quinn B 2001 Nature 413 597
[4] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A and Yang P 2008 Nature 451 163
[5] Blukai A I, Bunimovich Y, Tahir-Kheli J, Kan Y J, Goddard III W A and Heath J R 2008 Nature 451 168
[6] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
[7] Kim T S and Hershfield S 2002 Phys. Rev. Lett. 88 136601
[8] Humphrey T E and Linke H 2005 Phys. Rev. Lett. 94 096601
[9] Finch C M, Garcia-Suarez C M and Lambert C J 2009 Phys. Rev. B 79 033405
[10] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[11] Balandin A 2011 Nat. Mater. 10 569
[12] Li N B, Ren J, Wang L, Zhang G, Hänggi P and Li B W 2012 Rev. Mod. Phys. 84 1045
[13] Wang R Q and Jiang K M 2009 Chin. Phys. B 18 5443
[14] Xiao X B, Li X M and Chen Y G 2009 Chin. Phys. B 18 5462
[15] Bai X F, Chi F, Zheng J and Li Y N 2012 Chin. Phys. B 21 077301
[16] Kuo D M T and Chang Y C 2010 Phys. Rev. B 81 205321
[17] Guo Y, Qin J G, Ceng X Y and Gu B L 2003 Chin. Phys. Lett. 20 1124
[18] Lu M W, Zhang L D and Yan X H 2003 Chin. Phys. Lett. 20 124
[19] Huang L, You J Q, Yan X H and Wei S H 2002 Chin. Phys. Lett. 19 1505
[20] Zhang Y M and Xiong S J 2003 Chin. Phys. Lett. 20 2023
[21] Dubi Y and Di Ventra M 2009 Phys. Rev. B 79 081302
[22] Swirkowicz R, Wierzbicki M and Barnaś J 2009 Phys. Rev. B 80 195409
[23] Zhou J and Yang R 2010 Phys. Rev. B 82 075324
[24] Liu J, Sun Q F and Xie X C 2010 Phys. Rev. B 81 245323
[25] Chi F, Zheng J, Lu X D and Zhang K C 2011 Phys. Lett. A 375 1352
[26] Kubala B, König J and Pekola J 2008 Phys. Rev. Lett. 100 066801
[27] Wierzbicki M and Świrkowicz R 2011 Phys. Rev. B 84 075410
[28] Liu Y S, Chi F, Yang X F and Feng J F 2011 J. Appl. Phys. 109 053712
[29] Trocha P and Barnaś J 2012 Phys. Rev. B 85 085408
[30] Gómez-Silva G, Ávalos-Ovando O, Ladrón de Guevara M L and Orellana P A 2012 J. Appl. Phys. 111 053704
[31] Zheng J and Chi F 2012 J. Appl. Phys. 111 093702
[32] Zheng J, Chi F and Guo Y 2012 J. Phys.: Condens. Matter 24 265301
[33] Dong B and Lei X L 2002 J. Phys.: Condens. Matter 14 11747
[34] Scheibner R, Buhmann H, Reuter D, Kiselev M N and Molenkamp L W 2005 Phys. Rev. Lett. 95 176602
[35] Costi T A and Zlatić 2010 Phys. Rev. B 81 235127
[36] Heersche H B, de Groot Z, Folk J A, Kouwenhoven L P, van der Zant H S J, Houck A A, Labaziewicz J and Chuang I L 2006 Phys. Rev. Lett. 96 017205
[37] Tolea M and Bulka B R 2007 Phys. Rev. B 75 125301
[38] Lu H Z and Shen S Q 2008 Phys. Rev. B 77 235309
[39] Dubi Y and Di Ventra M 2011 Rev. Mod. Phys. 83 131
[40] Zhu L C, Jiang X D, Zu X T and Lü H F 2010 Phys. Lett. A 374 4269
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!