CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Coupling strength effect on shot noise in boron devices |
Li Gui-Qin (李桂琴), Guo Yong (郭永) |
Department of Physics, Tsinghua University, Beijing 100084, China |
|
|
Abstract The shot noise properties in boron devices are investigated with a tight-binding model and the non-equilibrium Green’s function. It is found that the shot noise and Fano factors can be tuned by changing the structures, the size, and the coupling strength. The shot noise is suppressed momentarily as we switch on the bias voltage, and the electron correlation is significant. The Fano factors are more sensitive to the ribbon width than to the ribbon length in the full coupling context. In the weak-coupling context, the Fano factors are almost invariant with the increase of length and width over a wide bias range.
|
Received: 18 March 2013
Revised: 22 April 2013
Accepted manuscript online:
|
PACS:
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
85.35.-p
|
(Nanoelectronic devices)
|
|
Fund: Project supported by the National Basic Research Program of China (Grants Nos. 2011CB921602 and 2011CB606405) and the National Natural Science Foundation of China (Grant Nos. 91221205 and 11174168). |
Corresponding Authors:
Li Gui-Qin
E-mail: ligqin@mail.tsinghua.edu.cn
|
Cite this article:
Li Gui-Qin (李桂琴), Guo Yong (郭永) Coupling strength effect on shot noise in boron devices 2013 Chin. Phys. B 22 117304
|
[1] |
Yazdani A, Eigler D and Lang N 1996 Science 272 1921
|
[2] |
Datta S, Tian W, Hong S, Reifenberger R, Henderson J and Kubiak C P 1997 Phys. Rev. Lett. 79 2530
|
[3] |
Tian W, Datta S, Hong S, Reifenberger R, Henderson J and Kubiak C P 1998 J. Chem. Phys. 109 2874
|
[4] |
Nitzan A and Ratner M A 2003 Science 300 1384
|
[5] |
Zhu Z W, Hao Y, Zhang J F, Fang J P and Liu H X 2006 Acta Phys. Sin. 55 5878 (in Chinese)
|
[6] |
Baadji N and Sanvito S 2012 Phys. Rev. Lett. 108 217201
|
[7] |
Carrascal D, Garcia-Suarez V M and Ferrer J 2012 Phys. Rev. B 85 195434
|
[8] |
Li Z L,Wang C K, Luo Y and Xue Q K 2005 Chin. Phys. 14 1036
|
[9] |
Blanter Ya M and Büttiker M 2000 Phys. Rep. 336 1
|
[10] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[11] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[12] |
Soodchomshom B, Tang I M and Hoonsawat R 2009 Physica E 41 1310
|
[13] |
Peres N M R, Guinea F and Castro Neto A H 2006 Phys. Rev. B 73 125411
|
[14] |
Nomura K and MacDonald A H 2007 Phys. Rev. Lett. 98 076602
|
[15] |
Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett. 100 206802
|
[16] |
Andriotis A N, Richter E and Menon M 2007 Appl. Phys. Lett. 91 152105
|
[17] |
Koskinen P 2011 Appl. Phys. Lett. 99 013105
|
[18] |
Li G Q, Ca J, Deng J K, Rocha A R and Sanvito S 2008 Appl. Phys. Lett. 92 163104
|
[19] |
Soudi A, Aivazian G, Shi S F, Xu X D and Gu Y 2012 Appl. Phys. Lett. 100 033115
|
[20] |
Kumar S B and Guo J 2012 Nanoscale 4 982
|
[21] |
Lipscomb W L 1963 Boron Hydrides (New York: Benjamin W A)
|
[22] |
Meutterties E L 1974 Boron Hydride Chemistry (New York: Academic)
|
[23] |
Cotton F A, Wilkinson G, Murillo C A and Bochmann M 1999 Advanced Inorganic Chemistry (New York: Wiley)
|
[24] |
Jemmis E D, Balakrishnarajan M M and Pancharatna P D 2002 Chem. Rev. 102 93
|
[25] |
Wang X J, Tian J F, Bao L H, Yang T Z, Hui C, Liu F, Shen C M, Xu N S and Gao H J 2008 Chin. Phys. B 17 3827
|
[26] |
Evans M H, Joannopoulos J D and Pantelides S T 2005 Phys. Rev. B 72 045434
|
[27] |
Lau K C and Pandey R 2007 J. Phys. Chem. C 111 2906
|
[28] |
Tang H and Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501
|
[29] |
Yang X, Ding Y and Ni J 2008 Phys. Rev. B 77 041402
|
[30] |
Li G Q 2009 Appl. Phys. Lett. 94 193116
|
[31] |
Li G Q 2010 Chin. Phys. B 19 017201
|
[32] |
Ziel A van der 1954 Noise (New York: Prentice-Hall)
|
[33] |
Iannaccone G, Lombardi G, Macucci M and Pellegrini B 1998 Phys. Rev. Lett. 80 1054
|
[34] |
Gonzalez T, Gonzalez C, Mateos J, Pardo D, Bulashenko O M, Ruby J M and Reggiani L 1998 Phys. Rev. Lett. 80 2901
|
[35] |
Nagaev K 1998 Phys. Rev. B 57 4628
|
[36] |
Kozub V and Rudin A 1995 Phys. Rev. B 52 7853
|
[37] |
Hung K and Wu G 1993 Phys. Rev. B 48 14687
|
[38] |
Sukhorukov E and Loss D 1998 Phys. Rev. Lett. 80 4959
|
[39] |
Martin T and Landauer R 1992 Phys. Rev. B 45 1742
|
[40] |
Zahid F, Paulsson M and Datta S 2003 Advanced Semi-conductors and Organic Nanotechniques (New York: Academic Press)
|
[41] |
Paulsson M, Zahid F and Datta S 2005 Huckel-IV on the nanoHub, https://www.nanohub.org/resources/422/
|
[42] |
Aleshkin V Y, Reggiani L and Rosini M 2006 Phys. Rev. B 73 165320
|
[43] |
Guo Y, Han L, Zhu R and Xu W 2008 Eur. Phys. J. B 62 45
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|