Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117304    DOI: 10.1088/1674-1056/22/11/117304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coupling strength effect on shot noise in boron devices

Li Gui-Qin (李桂琴), Guo Yong (郭永)
Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  The shot noise properties in boron devices are investigated with a tight-binding model and the non-equilibrium Green’s function. It is found that the shot noise and Fano factors can be tuned by changing the structures, the size, and the coupling strength. The shot noise is suppressed momentarily as we switch on the bias voltage, and the electron correlation is significant. The Fano factors are more sensitive to the ribbon width than to the ribbon length in the full coupling context. In the weak-coupling context, the Fano factors are almost invariant with the increase of length and width over a wide bias range.
Keywords:  shot noise      boron devices      coupling strength  
Received:  18 March 2013      Revised:  22 April 2013      Accepted manuscript online: 
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  85.35.-p (Nanoelectronic devices)  
Fund: Project supported by the National Basic Research Program of China (Grants Nos. 2011CB921602 and 2011CB606405) and the National Natural Science Foundation of China (Grant Nos. 91221205 and 11174168).
Corresponding Authors:  Li Gui-Qin     E-mail:  ligqin@mail.tsinghua.edu.cn

Cite this article: 

Li Gui-Qin (李桂琴), Guo Yong (郭永) Coupling strength effect on shot noise in boron devices 2013 Chin. Phys. B 22 117304

[1] Yazdani A, Eigler D and Lang N 1996 Science 272 1921
[2] Datta S, Tian W, Hong S, Reifenberger R, Henderson J and Kubiak C P 1997 Phys. Rev. Lett. 79 2530
[3] Tian W, Datta S, Hong S, Reifenberger R, Henderson J and Kubiak C P 1998 J. Chem. Phys. 109 2874
[4] Nitzan A and Ratner M A 2003 Science 300 1384
[5] Zhu Z W, Hao Y, Zhang J F, Fang J P and Liu H X 2006 Acta Phys. Sin. 55 5878 (in Chinese)
[6] Baadji N and Sanvito S 2012 Phys. Rev. Lett. 108 217201
[7] Carrascal D, Garcia-Suarez V M and Ferrer J 2012 Phys. Rev. B 85 195434
[8] Li Z L,Wang C K, Luo Y and Xue Q K 2005 Chin. Phys. 14 1036
[9] Blanter Ya M and Büttiker M 2000 Phys. Rep. 336 1
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[11] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[12] Soodchomshom B, Tang I M and Hoonsawat R 2009 Physica E 41 1310
[13] Peres N M R, Guinea F and Castro Neto A H 2006 Phys. Rev. B 73 125411
[14] Nomura K and MacDonald A H 2007 Phys. Rev. Lett. 98 076602
[15] Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett. 100 206802
[16] Andriotis A N, Richter E and Menon M 2007 Appl. Phys. Lett. 91 152105
[17] Koskinen P 2011 Appl. Phys. Lett. 99 013105
[18] Li G Q, Ca J, Deng J K, Rocha A R and Sanvito S 2008 Appl. Phys. Lett. 92 163104
[19] Soudi A, Aivazian G, Shi S F, Xu X D and Gu Y 2012 Appl. Phys. Lett. 100 033115
[20] Kumar S B and Guo J 2012 Nanoscale 4 982
[21] Lipscomb W L 1963 Boron Hydrides (New York: Benjamin W A)
[22] Meutterties E L 1974 Boron Hydride Chemistry (New York: Academic)
[23] Cotton F A, Wilkinson G, Murillo C A and Bochmann M 1999 Advanced Inorganic Chemistry (New York: Wiley)
[24] Jemmis E D, Balakrishnarajan M M and Pancharatna P D 2002 Chem. Rev. 102 93
[25] Wang X J, Tian J F, Bao L H, Yang T Z, Hui C, Liu F, Shen C M, Xu N S and Gao H J 2008 Chin. Phys. B 17 3827
[26] Evans M H, Joannopoulos J D and Pantelides S T 2005 Phys. Rev. B 72 045434
[27] Lau K C and Pandey R 2007 J. Phys. Chem. C 111 2906
[28] Tang H and Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501
[29] Yang X, Ding Y and Ni J 2008 Phys. Rev. B 77 041402
[30] Li G Q 2009 Appl. Phys. Lett. 94 193116
[31] Li G Q 2010 Chin. Phys. B 19 017201
[32] Ziel A van der 1954 Noise (New York: Prentice-Hall)
[33] Iannaccone G, Lombardi G, Macucci M and Pellegrini B 1998 Phys. Rev. Lett. 80 1054
[34] Gonzalez T, Gonzalez C, Mateos J, Pardo D, Bulashenko O M, Ruby J M and Reggiani L 1998 Phys. Rev. Lett. 80 2901
[35] Nagaev K 1998 Phys. Rev. B 57 4628
[36] Kozub V and Rudin A 1995 Phys. Rev. B 52 7853
[37] Hung K and Wu G 1993 Phys. Rev. B 48 14687
[38] Sukhorukov E and Loss D 1998 Phys. Rev. Lett. 80 4959
[39] Martin T and Landauer R 1992 Phys. Rev. B 45 1742
[40] Zahid F, Paulsson M and Datta S 2003 Advanced Semi-conductors and Organic Nanotechniques (New York: Academic Press)
[41] Paulsson M, Zahid F and Datta S 2005 Huckel-IV on the nanoHub, https://www.nanohub.org/resources/422/
[42] Aleshkin V Y, Reggiani L and Rosini M 2006 Phys. Rev. B 73 165320
[43] Guo Y, Han L, Zhu R and Xu W 2008 Eur. Phys. J. B 62 45
[1] Signal-to-noise ratio of Raman signal measured by multichannel detectors
Xue-Lu Liu(刘雪璐), Yu-Chen Leng(冷宇辰), Miao-Ling Lin(林妙玲), Xin Cong(从鑫), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2021, 30(9): 097807.
[2] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[3] Generating mechanism of pathological beta oscillations in STN-GPe circuit model: A bifurcation study
Jing-Jing Wang(王静静), Yang Yao(姚洋), Zhi-Wei Gao(高志伟), Xiao-Li Li(李小俚), Jun-Song Wang(王俊松). Chin. Phys. B, 2020, 29(5): 058701.
[4] Effects of interface bound states on the shot noise in normal metal-low-dimensional Rashba semiconductor tunnel junctions with induced s-wave pairing potential
Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2019, 28(5): 057201.
[5] Cryogenic amplifier with low input-referred voltage noise calibrated by shot noise measurement
Wuhao Yang(杨伍昊), Jian Wei(危健). Chin. Phys. B, 2018, 27(6): 060702.
[6] Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers
Yong Li(李勇), Xiangjun Jin(金香君), Pengfei Pan(潘鹏飞), Fu Nan Tan, Wen Siang Lew, Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127502.
[7] Photon-assisted and spin-dependent shot noise in magnetic-field tunable ZnSe/Zn1-xMnxSe structures
Chun-Lei Li(李春雷), Yong Guo(郭永), Xiao-Ming Wang(王小明), Yuan Lv(律原). Chin. Phys. B, 2017, 26(2): 027301.
[8] Investigation on the dynamic behaviors of the coupled memcapacitor-based circuits
Zhi Zhou(周知), Dong-Sheng Yu(于东升), Xiao-Yuan Wang(王晓媛). Chin. Phys. B, 2017, 26(12): 120701.
[9] Multi-step shot noise spectrum induced by a local large spin
Niu Peng-Bin (牛鹏斌), Shi Yun-Long (石云龙), Sun Zhu (孙祝), Nie Yi-Hang (聂一行). Chin. Phys. B, 2015, 24(12): 127309.
[10] Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
Chai Yuan (柴元), Chen Li-Qun (陈立群). Chin. Phys. B, 2014, 23(3): 030504.
[11] Spin-dependent negative differential conductance in transport through single-molecule magnets
Luo Wei (罗威), Wang Rui-Qiang (王瑞强), Hu Liang-Bin (胡梁宾), Yang Mou (杨谋). Chin. Phys. B, 2013, 22(4): 047201.
[12] Collective behaviour of climate indices in the North Pacific air–sea system and its potential relationships with decadal climate changes
Wang Xiao-Juan(王晓娟), Zhi Rong(支蓉), He Wen-Ping(何文平), and Gong Zhi-Qiang(龚志强) . Chin. Phys. B, 2012, 21(2): 029201.
[13] Stochastic synchronization for time-varying complex dynamical networks
Guo Xiao-Yong(郭晓永) and Li Jun-Min(李俊民) . Chin. Phys. B, 2012, 21(2): 020501.
[14] Shot noise of the spin inelastic tunneling through a quantum dot with single molecule-magnet
Chang Bo(常博)and Liang Jiu-Qing(梁九卿). Chin. Phys. B, 2011, 20(1): 017307.
[15] Shot noise in electron transport through a double quantum dot: a master equation approach
Ou-Yang Shi-Hua(欧阳仕华), Lam Chi-Hang(林志恒), and You Jian-Qiang(游建强). Chin. Phys. B, 2010, 19(5): 050519.
No Suggested Reading articles found!