Special Issue:
TOPICAL REVIEW — Quantum information
|
TOPICAL REVIEW—Quantum information |
Prev
Next
|
|
|
Graphene-like physics in optical lattices |
Mei Feng (梅锋)a, Zhang Dan-Wei (张丹伟)b, Zhu Shi-Liang (朱诗亮)a |
a National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China; b Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China |
|
|
Abstract Graphene has attracted enormous attention over the past years in condensed matter physics. The most interesting feature of graphene is that its low-energy excitations are relativistic Dirac fermions. Such feature is the origin of many topological properties in graphene-like physics. On the other hand, ultracold quantum gas trapped in an optical lattice has become a unique setting for quantum simulation of condensed matter physics. Here, we mainly review our recent work on quantum simulation of graphene-like physics with ultracold atoms trapped in a honeycomb or square optical lattice, including the simulation of Dirac fermions and quantum Hall effect with and without Landau levels. We also present the related experimental advances.
|
Received: 28 September 2013
Revised: 18 October 2013
Accepted manuscript online:
|
PACS:
|
61.48.Gh
|
(Structure of graphene)
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11125417), the State Key Program for Basic Research of China (Grant No. 2011CB922104), and the PCSIRT. DWZ was also supported by the SRFGS of SCNU. |
Corresponding Authors:
Zhu Shi-Liang
E-mail: slzhunju@163.com
|
Cite this article:
Mei Feng (梅锋), Zhang Dan-Wei (张丹伟), Zhu Shi-Liang (朱诗亮) Graphene-like physics in optical lattices 2013 Chin. Phys. B 22 116106
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[3] |
Geim A K 2009 Science 324 1530
|
[4] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[5] |
Goerbig M O 2011 Rev. Mod. Phys. 83 1193
|
[6] |
Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
|
[7] |
Zheng Y and Ando T 2002 Phys. Rev. B 65 245420
|
[8] |
Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
|
[9] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[10] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[11] |
Haldane F D M 1988 Phys. Rev. Lett. 61 20015
|
[12] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[13] |
Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243
|
[14] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[15] |
Dalibard J, Gerbier F, Juzeliunas G and Ohberg P 2011 Rev. Mod. Phys. 83 1523
|
[16] |
Zhang D W, Wang Z D and Zhu S L 2012 Front. Phys. 7 31
|
[17] |
Tarruell L, Greif D, Uehlinger T, Jotzu G and Esslinger T 2012 Nature 483 302
|
[18] |
Zhu S L, Wang B G and Duan L M 2007 Phys. Rev. Lett. 98 260402
|
[19] |
Lin Y J, Compton R L, Garcia K J, Porto J V and Spielman I B 2009 Nature 462 628
|
[20] |
Lin Y J, Jimenez-Garcia K and Spielman I B 2011 Nature 471 83
|
[21] |
Aidelsburger M, Atala M, Nascimb’ene M, Troztky S, Chen Y A and Bloch I 2011 Phys. Rev. Lett. 107 255301
|
[22] |
Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301
|
[23] |
Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
|
[24] |
Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
|
[25] |
LeBlanc L J, Williams R A, Beeler M C, Perry A R and Spielman I B 2012 Phys. Rev. Lett. 108 225303
|
[26] |
Struck J, Ölschlaġer C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K and Windpassinger P 2012 Phys. Rev. Lett. 108 225304
|
[27] |
Struck J, Weinberg M, Ölschläger C, Windpassinger P, Simonet J, Sengstock K, Höpner R, Hauke P, Eckardt A, Lewenstein M and Mathey L 2013 Nat. Phys.
|
[28] |
Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I arXiv:1308.0321
|
[29] |
Miyake H, Sivloglou G A, Kennedy C J, Burton W C and Ketterle W arXiv:1308.1431
|
[30] |
LeBlanc L J, Beeler M C, Jimenez-Garcia K, Perry A R, Sugawa S, Williams R A and Spielman I B 2013 New J. Phys. 15 073011
|
[31] |
Qu C, Hamner C, Gong M, Zhang C and Engels P 2013 Phys. Rev. A 88 021604
|
[32] |
Zhu S L, Fu H, Wu C J, Zhang S C and Duan L M 2006 Phys. Rev. Lett. 97 240401
|
[33] |
Liu X J, Liu X, Kwek L C and Oh C H 2007 Phys. Rev. Lett. 98 026602
|
[34] |
Beeler M C, Williams R A, Jimenez-Garcia K, LeBlanc L J, Perry A R and Spielman I B 2013 Nature 498 201
|
[35] |
deGail R, Fuchs J N, Goerbig M O, Piechon F and Montambaux G 2012 Physica B 407 1948
|
[36] |
Lee K L, Gremaud B, Han R, Englert B G and Miniatura C 2009 Phys. Rev. A 80 043411
|
[37] |
Block J K and Nygaard N 2009 Phys. Rev. A 80 043411
|
[38] |
Zhao E and Paramekanti A 2006 Phys. Rev. Lett. 97 230404
|
[39] |
Chen Z and Wu B 2011 Phys. Rev. Lett. 107 065301
|
[40] |
Sun F, Yu X L, Ye J, Fan H and Liu W M 2013 Sci Rep. 3 2119
|
[41] |
Poletti D, Miniatura C and Gremaud B 2011 Europhys. Lett. 93 37008
|
[42] |
Bermudez A, Goldman N, Kubasiak A, Lewenstein M and Martin-Delgado M A 2010 New J. Phys. 12 033041
|
[43] |
Wu C and Sarma S D 2008 Phys. Rev. B 77 235107
|
[44] |
Gomes K K, Mar W, Ko W, Guinea F and Manoharan H C 2012 Nature 483 306
|
[45] |
Bellec M, Kuhl U, Montambaux G and Mortessagne F 2013 Phys. Rev. Lett. 110 033902
|
[46] |
Koghee S, Lim L K, Goerbig M O and Smith C M 2012 Phys. Rev. A 85 023637
|
[47] |
Lifshitz I M 1960 Sov. Phys. JETP 11 1130
|
[48] |
Bercioux D, Urban D F, Grabert H and Häsler W 2009 Phys. Rev. A 80 063603
|
[49] |
Bercioux D, Goldman N and Urban D F 2011 Phys. Rev. A 83 023609
|
[50] |
Shen R, Shao L B, Wang B and Xing D Y 2010 Phys. Rev. B 81 041410
|
[51] |
Satija I I, Dakin D C, Vaishnav J Y and Clark C W 2008 Phys. Rev. A 77 043410
|
[52] |
Hou J M, Yang W X and Liu X J 2009 Phys. Rev. A 79 043621
|
[53] |
Lim L K, Smith C M and Hemmerich A 2008 Phys. Rev. Lett. 100 130402
|
[54] |
Lim L K, Lazarides A, Hemmerich A and Smith C M 2009 Europhys. Lett. 88 36001
|
[55] |
Lim L K, Hemmerich A and Smith C M 2010 Phys. Rev. A 81 023404
|
[56] |
Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A 2009 Phys. Rev. Lett. 103 035301
|
[57] |
Liu X J, Liu X, Wu C and Sinova J 2010 Phys. Rev. A 81 033622
|
[58] |
Kennett M P, Komeilizadeh N, Kaveh K and Smith P M 2011 Phys. Rev. A 83 053636
|
[59] |
Yang M and Zhu S L 2010 Phys. Rev. A 82 064102
|
[60] |
Bermudez A, Mazza L, Rizzi M, Goldman N, Lewenstein M and Martin-Delgado M A 2010 Phys. Rev. Lett. 105 190404
|
[61] |
Lepori L, Mussardo G and Trombettoni A 2010 Europhys. Lett. 92 50003
|
[62] |
Vaishnav J Y and Clark C W 2008 Phys. Rev. Lett. 100 153002
|
[63] |
Juzeliūnas G, Ruseckas J, Lindberg M, Santos L and Öhberg P 2008 Phys. Rev. A 77 011802
|
[64] |
Merkl M, Zimmer F E and Öhberg P 2008 Europhys. Lett. 83 54002
|
[65] |
Zhu S L, Zhang D W and Wang Z D 2009 Phys. Rev. Lett. 102 210403
|
[66] |
Song J J and Foreman B A 2009 Phys. Rev. A 80 045602
|
[67] |
Zhang Q, Gong J and Oh C H 2010 Phys. Rev. A 81 023608
|
[68] |
Zhu S L, Shao L B, Wang Z D and Duan L M 2011 Phys. Rev. Lett. 106 100404
|
[69] |
Zhang D W, Xue Z Y, Yan H, Wang Z D and Zhu S L 2012 Phys. Rev. A 85 013628
|
[70] |
Zhang D W, Shao L B, Xue Z Y, Yan H, Wang Z D and Zhu S L 2012 Phys. Rev. A 86 063616
|
[71] |
Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W 2006 Nature 311 492
|
[72] |
Partridge G B, Li W, Kamar R I, Liao Y and Hulet R G 2006 Nature 311 503
|
[73] |
Stamper-Kurn D M, Chikkatur A P, Gorlitz A, Inouye S, Gupta S, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 83 2876
|
[74] |
Kohl M, Moritz H, Stoferle T, Günter K and Esslinger T 2005 Phys. Rev. Lett. 94 080403
|
[75] |
Mei F, Zhu S L, Feng X L, Zhang Z M and Oh C H 2011 Phys. Rev. A 84 023662
|
[76] |
Jaksch D and Zoller P 2003 New J. Phys. 5 56
|
[77] |
Watanabe H, Hatsugai Y and Aoki H 2010 Phys. Rev. B 82 241403
|
[78] |
Shao L B, Zhu S L, Sheng L, Xing D Y and Wang Z D 2008 Phys. Rev. Lett. 101 246801
|
[79] |
Umucalilar R O, Zhai H and Oktel M O 2008 Phys. Rev. Lett. 100 070402
|
[80] |
Mei F, Zhu S L, Zhang Z M, Oh C H and Goldman N 2012 Phys. Rev. A 85 013638
|
[81] |
Wu C J 2008 Phys. Rev. Lett. 101 186807
|
[82] |
Zhang M, Hsiang-hsuan H, Zhang C and Wu C 2011 Phys. Rev. A 83 023615
|
[83] |
Alba E, Fernandez-Gonzalvo X, Mur-Petit J, Pachos J K and Garcia-Ripoll J J 2011 Phys. Rev. Lett. 107 235301
|
[84] |
Goldman N, Anisimovas E, Gerbier F, Ohberg P, Spielman I B and Juzeliunas G 2013 New J. Phys. 15 013205
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|