Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 103101    DOI: 10.1088/1674-1056/22/10/103101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Translational, vibrational, rotational enhancements and alignments of reactions H+ClF (v=0–5, j=0, 3, 6, 9) →HCl+F and HF+Cl,at Erel=0.5–20 kcal/mol

Victor Wei-Keh Chao(Wu)a b c
a Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 80782 Kaohsiung City, Taiwan, China;
b Group 1101, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
c Victor Basic Research Laboratory e. V. Gadderbaumer-Str. 22, D-33602 Bielefeld, Germany
Abstract  Quasi-classical trajectory calculations of the title reactions H+ClF (v=0–5, j=0,3,6,9)→HCl+F and H+ClF (v=0-5, j=0,3,6,9)→HF+Cl at Erel=0.5 kcal/mol–20 kcal/mol on ground potential energy surface DHTSN of 1 2A0 [M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje and D. J. Nesbitt, J. Chem. Phys. 124, 224303 (2006)] are performed. Potential energy surfaces derived from DHTSN for the title reactions are obtained, and compared with that of DHTSN for the reaction F+HCl→HF+Cl. Both potential energy surfaces have an early barrier pattern. Integral cross sections and alignments of product molecules HCl and HF dependent on the internal energy states v and j of reactant molecule ClF are obtained and compared. Translational, vibrational, and rotational energy specific translational enhancements of the reactant molecule ClF of the title reactions are found. Reaction mechanisms of the title reactions according to the respective potential energy contours are further found and explained. Reasons of simultaneous translational and vibrational enhancements are clarified.
Keywords:  quasi-classical trajectory calculation      integral cross section      alignment      TRV enhancement  
Received:  04 February 2013      Revised:  31 March 2013      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  82.20.Bc (State selected dynamics and product distribution)  
Fund: Project supported by the State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (Grant No. 2012-1101-1) and Victor Basic Research Laboratory e. V. in Bielefeld, Germany.
Corresponding Authors:  Victor Wei-Keh Chao(Wu)     E-mail:  victorbres3tw@yahoo.com.tw

Cite this article: 

Victor Wei-Keh Chao(Wu) Translational, vibrational, rotational enhancements and alignments of reactions H+ClF (v=0–5, j=0, 3, 6, 9) →HCl+F and HF+Cl,at Erel=0.5–20 kcal/mol 2013 Chin. Phys. B 22 103101

[1] London F 1928 Sommerfeld Festschrift (Leipzig: S. Hirzel) p. 104
[2] London F 1929 Z. Elektrochem. 35 552
[3] Heitler W and London F 1927 Z. Physik 44 455
[4] Eyring H and Polanyi M 1931 Z. Phys. Chem. Abt. B 12 279
[5] Sato S 1955 J. Chem. Phys. 23 592
[6] Sato S 1955 J. Chem. Phys. 23 2465
[7] Sato S 1955 Bull. Chem. Soc. Jpn. 28 450
[8] Wall F T, Hiller L A Jr and Mazur J 1958 J. Chem. Phys. 29 255
[9] Wall F T, Hiller L A Jr and Mazur J 1961 J. Chem. Phys. 35 1284
[10] Program No. QCPE273, version of 1961 of the Quantum Chemistry Program Exchange (QCPE), University of Indiana, Bloomingtom, USA
[11] Wu V W K 1996 Verhandl. DPG. 60 626 MO2.21
[12] Blais N C and Bunker D L 1962 J. Chem. Phys. 37 2713
[13] Blais N C and Bunker D L 1963 J. Chem. Phys. 39 315
[14] Bunker D L and Blais N C 1964 J. Chem. Phys. 41 2377
[15] Karplus M and Raff L M 1964 J. Chem. Phys. 41 1267
[16] Polanyi J C and Rosner S D 1963 J. Chem. Phys. 38 1028
[17] Kuntz P J, Nemeth E M, Planyi J C, Rosner S D and Young C E 1966 J. Chem. Phys. 44 1168
[18] Polanyi J C and Wong W H 1969 J. Chem. Phys. 51 1439
[19] Hodgson B A and Polanyi J C 1971 J. Chem. Phys. 55 4745
[20] Polanyi J C 1972 Accounts Chem. Res. 5 161
[21] Kirsch L J and Polanyi J C 1972 J. Chem. Phys. 57 4498
[22] Ding AMG, Kirsch L J, Perry D S and Polanyi J C 1973 Faraday Disc. Chem. Soc. 55 252
[23] Brandt D and Polanyi J C 1978 Chem. Phys. 35 23
[24] Polanyi J C, Schreiber J L and Skrlac W J 1979 Faraday Disc. Chem. Soc. 67 66
[25] Han K L, He G Z and Lou N Q 1993 Chin. Chem. Lett. 4 517
[26] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[27] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[28] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[29] Chen, M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[30] Aquilanti V, Pirani F, Cappelletti D, Vecchiocattivi F and Kasai T 2004 Theory of Chemical Reaction Dynamics (Netherland: Springer) Vol. 145, pp. 243-251
[31] Han K L and Sun B F 2009 Potential Energy Surface and Molecular Scattering Theory, (Changchun: Jilin University Press) p. 267 (ISBN 978-7-5601-4080-3)
[32] Wang M L, Han K L, Zhan J P, Wu V W K, He G Z and Lou N Q 1997 Chem. Phys. Lett. 278 307
[33] Sayós R, Hernando J and Hijazo J 1999 Phys. Chem. Chem. Phys. 1 947
[34] Sayós, R, Hernando R J, Francia R and González M 1999 Phys. Chem. Chem. Phys. 2 523
[35] Hayes M Y, Deskevich M P, Nesbitt D J, Takahashi K and Skodje R T 2006 J. Phys. Chem. A 110 436
[36] Deskevich M P, Hayes M Y, Takahashi K, Skodje R T and Nesbitt D J 2006 J. Chem. Phys. 124 224303
[37] Zolot A M and Nesbitt D J 2007 J. Chem. Phys. 127 114319
[38] Yin S H, Guo M X, Li L, Li X P and Zhang Y H 2010 Chin. Sci. Bull. 57 3868
[39] Feng P and Chu T S 2011 J. Comput. Sci. Eng. 1 18
[40] Würzberg E and Houston P L 1980 J. Chem. Phys. 72 5915
[41] Beadle P, Dunn M R, Jonathan N B H, Liddy J P and Naylor J C 1978 J. Chem. Soc., Faraday Trans. II 74 2170
[42] Kornweitz H and Persky A 2004 J. Phys. Chem. A 108 140
[43] Fishchuk A V,Wormer P E S and van der Avoird A 2006 J. Phys. Chem. A 110 5273
[44] Tamagake K and Setser D W 1979 J. Phys. Chem. 83 1000
[45] Sung J P, Malins R J and Setser D W 1979 J. Phys. Chem. 83 1007
[46] Chen L, Pan Y M, Cai Z S and Zhao X Z 1998 Sci. China Ser. B 41 97
[47] Du F P, Chen L, Cai Z S, Pan Y M and Zhao X Z 1999 Acta Phys. Chim. Sin. 15 593
[48] Eades R A and Dunning T H Jr 2008 J. Chem. Phys. 75 2008
[49] Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407
[50] Chao(Wu) V W K 2012 Additions & Corrections, Phys. Chem. Chem. Phys. 14 16784
[51] Yin S H, Guo M X, Zou J H, Xu X S, Che L, Li L and Gao H 2012 J. Theor. Comput. Chem. 11 791
[52] Yue X F and Miao X Y 2011 J. Chem. Sci. 123 21
[53] Merritt J M, Küpper J and Miller R E 2005 Phys. Chem. Chem. Phys. 7 67
[54] Zolot A M and Nesbitt D J 2007 J. Chem. Phys. 127 114319
[55] Tang B Y, Yang B H, Han K L, Zhang R Q and Zhang J Z H 2000 J. Chem. Phys. 113 10105
[56] Quéméner G and Balakrishnan N 2008 J. Chem. Phys. 128 224304
[57] Schatz G C 2000 Science 288 1599
[58] Alexander M H, Manolopoulos D E and Werner H J 2000 J. Chem. Phys. 113 11084
[59] Xie T X, Zhang Y, Zhao M Y and Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
[60] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[61] Berry M J and Pimentel G C 1969 J. Chem. Phys. 51 2274
[62] Wu V W K 2010 Chin. J. Chem. Phys. 23 149
[63] Wu V W K, Chung M Y and Kure(Ko) F 2010 J. Mol. Struct. 983 1
[64] Chao(Wu) V W K 2013 J. Theor. Comput. Chem. 12 1250104
[65] Chao(Wu) V W K in preparation
[66] Wei Q and Wu V W K 2009 Mol. Phys. 107 1453
[67] Wei Q, Wu V W K and Zhou B 2009 J. Theor. Comput. Chem. 8 1177
[68] Wei Q, Li T, Zhou B and Wu V W K 2009 J. Mol. Struct. Theochem. 913 162
[69] Xiao J, Wang M S and Yang C L 2011 Chin. Phys. Lett. 28 013101
[70] Yue X F and Wang T 2011 Chin. Phys. Lett. 28 023101
[71] Zhao L, Liu C Z and Sun P 2011 Chin. Phys. Lett. 28 083101
[72] Shi D H, Sun J F and He X H 2011 Chin. Phys. B 20 078201
[73] Xu Z H and Zong F J 2011 Chin. Phys. B 20 063104
[74] Xiao J, Yang C L and Wang M S 2012 Chin. Phys. B 21 043101
[75] Yang T G, Yuan J C, Cheng D H and Chen M D 2013 Commun. Comput. Chem. 1 15
[76] Kuo Y H, Zhang F Y and Ma H Z 2013 Commun. Comput. Chem. 1 99
[77] Wu W K, Reaktive Streuung zwischen Kalium, Barium und den Wasserstoffhalogeniden HCl und HBr, Dr.rer.nat. Dissertation, Faculty of Physics, University of Bielefeld, Bielefeld, Germany, January 23, 1986, 268 pages
[78] Wu V W K, Han K L and He G Z 1997 Chem. Lett. 309 841
[79] Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 1991 Chem. Phys. Lett. 181 474
[80] Han K L, He G Z and Lou N Q 1991 Chem. Phys. Lett. 178 528
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[3] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[6] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[7] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[8] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[9] Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse
Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Deng-Wang Li(李登旺), Zhi-Ping Liu(刘治平), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2022, 31(10): 103301.
[10] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[11] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[12] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[13] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[14] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[15] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
No Suggested Reading articles found!