|
|
Translational, vibrational, rotational enhancements and alignments of reactions H+ClF (v=0–5, j=0, 3, 6, 9) →HCl+F and HF+Cl,at Erel=0.5–20 kcal/mol |
Victor Wei-Keh Chao(Wu)a b c |
a Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 80782 Kaohsiung City, Taiwan, China;
b Group 1101, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
c Victor Basic Research Laboratory e. V. Gadderbaumer-Str. 22, D-33602 Bielefeld, Germany |
|
|
Abstract Quasi-classical trajectory calculations of the title reactions H+ClF (v=0–5, j=0,3,6,9)→HCl+F and H+ClF (v=0-5, j=0,3,6,9)→HF+Cl at Erel=0.5 kcal/mol–20 kcal/mol on ground potential energy surface DHTSN of 1 2A0 [M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje and D. J. Nesbitt, J. Chem. Phys. 124, 224303 (2006)] are performed. Potential energy surfaces derived from DHTSN for the title reactions are obtained, and compared with that of DHTSN for the reaction F+HCl→HF+Cl. Both potential energy surfaces have an early barrier pattern. Integral cross sections and alignments of product molecules HCl and HF dependent on the internal energy states v and j of reactant molecule ClF are obtained and compared. Translational, vibrational, and rotational energy specific translational enhancements of the reactant molecule ClF of the title reactions are found. Reaction mechanisms of the title reactions according to the respective potential energy contours are further found and explained. Reasons of simultaneous translational and vibrational enhancements are clarified.
|
Received: 04 February 2013
Revised: 31 March 2013
Accepted manuscript online:
|
PACS:
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
31.50.Bc
|
(Potential energy surfaces for ground electronic states)
|
|
34.20.-b
|
(Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)
|
|
82.20.Bc
|
(State selected dynamics and product distribution)
|
|
Fund: Project supported by the State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (Grant No. 2012-1101-1) and Victor Basic Research Laboratory e. V. in Bielefeld, Germany. |
Corresponding Authors:
Victor Wei-Keh Chao(Wu)
E-mail: victorbres3tw@yahoo.com.tw
|
Cite this article:
Victor Wei-Keh Chao(Wu) Translational, vibrational, rotational enhancements and alignments of reactions H+ClF (v=0–5, j=0, 3, 6, 9) →HCl+F and HF+Cl,at Erel=0.5–20 kcal/mol 2013 Chin. Phys. B 22 103101
|
[1] |
London F 1928 Sommerfeld Festschrift (Leipzig: S. Hirzel) p. 104
|
[2] |
London F 1929 Z. Elektrochem. 35 552
|
[3] |
Heitler W and London F 1927 Z. Physik 44 455
|
[4] |
Eyring H and Polanyi M 1931 Z. Phys. Chem. Abt. B 12 279
|
[5] |
Sato S 1955 J. Chem. Phys. 23 592
|
[6] |
Sato S 1955 J. Chem. Phys. 23 2465
|
[7] |
Sato S 1955 Bull. Chem. Soc. Jpn. 28 450
|
[8] |
Wall F T, Hiller L A Jr and Mazur J 1958 J. Chem. Phys. 29 255
|
[9] |
Wall F T, Hiller L A Jr and Mazur J 1961 J. Chem. Phys. 35 1284
|
[10] |
Program No. QCPE273, version of 1961 of the Quantum Chemistry Program Exchange (QCPE), University of Indiana, Bloomingtom, USA
|
[11] |
Wu V W K 1996 Verhandl. DPG. 60 626 MO2.21
|
[12] |
Blais N C and Bunker D L 1962 J. Chem. Phys. 37 2713
|
[13] |
Blais N C and Bunker D L 1963 J. Chem. Phys. 39 315
|
[14] |
Bunker D L and Blais N C 1964 J. Chem. Phys. 41 2377
|
[15] |
Karplus M and Raff L M 1964 J. Chem. Phys. 41 1267
|
[16] |
Polanyi J C and Rosner S D 1963 J. Chem. Phys. 38 1028
|
[17] |
Kuntz P J, Nemeth E M, Planyi J C, Rosner S D and Young C E 1966 J. Chem. Phys. 44 1168
|
[18] |
Polanyi J C and Wong W H 1969 J. Chem. Phys. 51 1439
|
[19] |
Hodgson B A and Polanyi J C 1971 J. Chem. Phys. 55 4745
|
[20] |
Polanyi J C 1972 Accounts Chem. Res. 5 161
|
[21] |
Kirsch L J and Polanyi J C 1972 J. Chem. Phys. 57 4498
|
[22] |
Ding AMG, Kirsch L J, Perry D S and Polanyi J C 1973 Faraday Disc. Chem. Soc. 55 252
|
[23] |
Brandt D and Polanyi J C 1978 Chem. Phys. 35 23
|
[24] |
Polanyi J C, Schreiber J L and Skrlac W J 1979 Faraday Disc. Chem. Soc. 67 66
|
[25] |
Han K L, He G Z and Lou N Q 1993 Chin. Chem. Lett. 4 517
|
[26] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[27] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[28] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[29] |
Chen, M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[30] |
Aquilanti V, Pirani F, Cappelletti D, Vecchiocattivi F and Kasai T 2004 Theory of Chemical Reaction Dynamics (Netherland: Springer) Vol. 145, pp. 243-251
|
[31] |
Han K L and Sun B F 2009 Potential Energy Surface and Molecular Scattering Theory, (Changchun: Jilin University Press) p. 267 (ISBN 978-7-5601-4080-3)
|
[32] |
Wang M L, Han K L, Zhan J P, Wu V W K, He G Z and Lou N Q 1997 Chem. Phys. Lett. 278 307
|
[33] |
Sayós R, Hernando J and Hijazo J 1999 Phys. Chem. Chem. Phys. 1 947
|
[34] |
Sayós, R, Hernando R J, Francia R and González M 1999 Phys. Chem. Chem. Phys. 2 523
|
[35] |
Hayes M Y, Deskevich M P, Nesbitt D J, Takahashi K and Skodje R T 2006 J. Phys. Chem. A 110 436
|
[36] |
Deskevich M P, Hayes M Y, Takahashi K, Skodje R T and Nesbitt D J 2006 J. Chem. Phys. 124 224303
|
[37] |
Zolot A M and Nesbitt D J 2007 J. Chem. Phys. 127 114319
|
[38] |
Yin S H, Guo M X, Li L, Li X P and Zhang Y H 2010 Chin. Sci. Bull. 57 3868
|
[39] |
Feng P and Chu T S 2011 J. Comput. Sci. Eng. 1 18
|
[40] |
Würzberg E and Houston P L 1980 J. Chem. Phys. 72 5915
|
[41] |
Beadle P, Dunn M R, Jonathan N B H, Liddy J P and Naylor J C 1978 J. Chem. Soc., Faraday Trans. II 74 2170
|
[42] |
Kornweitz H and Persky A 2004 J. Phys. Chem. A 108 140
|
[43] |
Fishchuk A V,Wormer P E S and van der Avoird A 2006 J. Phys. Chem. A 110 5273
|
[44] |
Tamagake K and Setser D W 1979 J. Phys. Chem. 83 1000
|
[45] |
Sung J P, Malins R J and Setser D W 1979 J. Phys. Chem. 83 1007
|
[46] |
Chen L, Pan Y M, Cai Z S and Zhao X Z 1998 Sci. China Ser. B 41 97
|
[47] |
Du F P, Chen L, Cai Z S, Pan Y M and Zhao X Z 1999 Acta Phys. Chim. Sin. 15 593
|
[48] |
Eades R A and Dunning T H Jr 2008 J. Chem. Phys. 75 2008
|
[49] |
Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407
|
[50] |
Chao(Wu) V W K 2012 Additions & Corrections, Phys. Chem. Chem. Phys. 14 16784
|
[51] |
Yin S H, Guo M X, Zou J H, Xu X S, Che L, Li L and Gao H 2012 J. Theor. Comput. Chem. 11 791
|
[52] |
Yue X F and Miao X Y 2011 J. Chem. Sci. 123 21
|
[53] |
Merritt J M, Küpper J and Miller R E 2005 Phys. Chem. Chem. Phys. 7 67
|
[54] |
Zolot A M and Nesbitt D J 2007 J. Chem. Phys. 127 114319
|
[55] |
Tang B Y, Yang B H, Han K L, Zhang R Q and Zhang J Z H 2000 J. Chem. Phys. 113 10105
|
[56] |
Quéméner G and Balakrishnan N 2008 J. Chem. Phys. 128 224304
|
[57] |
Schatz G C 2000 Science 288 1599
|
[58] |
Alexander M H, Manolopoulos D E and Werner H J 2000 J. Chem. Phys. 113 11084
|
[59] |
Xie T X, Zhang Y, Zhao M Y and Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
|
[60] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[61] |
Berry M J and Pimentel G C 1969 J. Chem. Phys. 51 2274
|
[62] |
Wu V W K 2010 Chin. J. Chem. Phys. 23 149
|
[63] |
Wu V W K, Chung M Y and Kure(Ko) F 2010 J. Mol. Struct. 983 1
|
[64] |
Chao(Wu) V W K 2013 J. Theor. Comput. Chem. 12 1250104
|
[65] |
Chao(Wu) V W K in preparation
|
[66] |
Wei Q and Wu V W K 2009 Mol. Phys. 107 1453
|
[67] |
Wei Q, Wu V W K and Zhou B 2009 J. Theor. Comput. Chem. 8 1177
|
[68] |
Wei Q, Li T, Zhou B and Wu V W K 2009 J. Mol. Struct. Theochem. 913 162
|
[69] |
Xiao J, Wang M S and Yang C L 2011 Chin. Phys. Lett. 28 013101
|
[70] |
Yue X F and Wang T 2011 Chin. Phys. Lett. 28 023101
|
[71] |
Zhao L, Liu C Z and Sun P 2011 Chin. Phys. Lett. 28 083101
|
[72] |
Shi D H, Sun J F and He X H 2011 Chin. Phys. B 20 078201
|
[73] |
Xu Z H and Zong F J 2011 Chin. Phys. B 20 063104
|
[74] |
Xiao J, Yang C L and Wang M S 2012 Chin. Phys. B 21 043101
|
[75] |
Yang T G, Yuan J C, Cheng D H and Chen M D 2013 Commun. Comput. Chem. 1 15
|
[76] |
Kuo Y H, Zhang F Y and Ma H Z 2013 Commun. Comput. Chem. 1 99
|
[77] |
Wu W K, Reaktive Streuung zwischen Kalium, Barium und den Wasserstoffhalogeniden HCl und HBr, Dr.rer.nat. Dissertation, Faculty of Physics, University of Bielefeld, Bielefeld, Germany, January 23, 1986, 268 pages
|
[78] |
Wu V W K, Han K L and He G Z 1997 Chem. Lett. 309 841
|
[79] |
Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 1991 Chem. Phys. Lett. 181 474
|
[80] |
Han K L, He G Z and Lou N Q 1991 Chem. Phys. Lett. 178 528
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|