Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 113101    DOI: 10.1088/1674-1056/ac7456
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction

Yong Zhang(张勇)1,†, Xiugang Guo(郭秀刚)2, and Haigang Yang(杨海刚)1
1 Department of Physics, Tonghua Normal University, Tonghua 134002, China;
2 Weifang University of Science and Technology, Shouguang 262700, China
Abstract  A global potential energy surface (PES) of the ground state of SiH$_{2}^{+}$ system is built by using neural network method based on 18223 ab initio points. The topographic properties of PES are presented and compared with previous theoretical and experimental studies. The results indicate that the spectroscopic parameters obtained from the new PES are in good agreement with the experimental data. In order to further verify the validity of the new PES, a test dynamics calculation of the Si$^{+} +$ H$_{2}$ ($v_0 = 2, j_{0} = 0$) $\to $ H $+$ SiH$^{+}$ reaction has been carried out by using the time-dependent wave packet method. The integral cross sections and rate constants are computed for the title reaction. The reasonable dynamical behavior indicates that the newly constructed PES is suitable for relevant dynamics investigations.
Keywords:  potential energy surface      integral cross section      rate constant      time-dependent wave packet  
Received:  15 April 2022      Revised:  20 May 2022      Accepted manuscript online:  29 May 2022
PACS:  31.50.-x (Potential energy surfaces)  
  34.50.Lf (Chemical reactions)  
  34.50.-s (Scattering of atoms and molecules)  
Fund: Project was supported by Key Projects of Science and Technology in the 13th Five Year Plan of Jilin Provincial Department of Education, China (Grant No. JJKH20200482KJ).
Corresponding Authors:  Yong Zhang     E-mail:  victor0536@163.com

Cite this article: 

Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚) A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction 2022 Chin. Phys. B 31 113101

[1] Armentrout P B 2000 Int. J. Mass Spectrom. 200 219
[2] Ng C Y 2002 J. Phys. Chem. A 106 5953
[3] Zanchet A, Godard B, Bulut N, Roncero O, Halvick P and Cernicharo J 2013 Astrophys. J. 766 80
[4] Li W T, Yuan J C, Yuan M L, Zhang, Y, Yao M H and Sun Z G 2018 Phys. Chem. Chem. Phys. 20 1039
[5] Koseki S and Gordon M S 1987 J. Mol. Spectrosc. 123 392
[6] Escribano R and Campargue A 1998 J. Chem. Phys. 108 6249
[7] Kasap S and Capper P 2017 Springer Handbook of Electronic and Photonic Materials (Heidelberg: Springer) pp. 573-576
[8] Grevesse N and Sauval A J 1970 Astron. Astrophys. 9 232
[9] Sauval A J 1969 Solar Phys. 10 319
[10] Curtis M C, Jackson P A, Sarre P J and Whitham C J 1985 Mol. Phys. 56 485
[11] Hirst D M and Guest M F 1986 Mol. Phys. 59 141
[12] González M, Sayós R, Mota F and Aguilar A 1987 Chem. Phys. 113 417
[13] Mort S P, Jennings N A and Balint-Kurti G G 1994 Chem. Phys. Lett. 222 603
[14] Mort S P, Jennings N A, Balint-Kurti G G and Hirst D M 1994 J. Chem. Phys. 101 10576
[15] Bauer C, Hirst D M, Hall D I, Sarre P J and Rosmus P 1994 J. Chem. Soc. Faraday Trans. 90 517
[16] Gao F, Zhang L L, Zhao W L, Meng Q T and Song Y Z 2019 J. Chem. Phys. 150 224304
[17] Zhao W L, Tan R S, Cao X C, Gao F and Meng Q T 2021 Chin. Phys. B 30 123403
[18] Werner H J, Knowles P J, Knizia G, Manby F R and Schütz M, et al., MOLPRO, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net
[19] Schuchardt K L, Didier B T, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J and Windus T L 2007 J. Chem. Inf. Model. 47 1045
[20] David F 1996 J. Comput. Chem. 17 1571
[21] Pritchard B P, Altarawy D, Didier B, Gibson T D and Windus T L 2019 J. Chem. Inf. Model. 59 4814
[22] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[23] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[24] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[25] Jiang B, Li J and Guo H 2016 Int. Rev. Phys. Chem. 35 479
[26] Jiang B and Guo H 2013 J. Chem. Phys. 139 054112
[27] Li W T, He D and Sun Z G 2019 J. Chem. Phys. 151 185102
[28] Li W T, Wang X M, Zhao H L and He D 2020 Phys. Chem. Chem. Phys. 22 16203
[29] Yuan J C, He D and Chen M D 2015 Phys. Chem. Chem. Phys. 17 11732
[30] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York)
[31] Carlson T A, Copley J, Duric N, Elander N, Erman P, Larsson M and Lyyra M 1980 Astron. Astrophys. 83 238
[32] Dyke J M, Jonathan N, Morris A, Ridha A and Winter M J 1983 Chem. Phys. 81 481
[33] Zhang D H and Zhang J Z H 1999 J. Chem. Phys. 110 7622
[1] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[2] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[3] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[4] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[5] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[6] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[7] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[8] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[9] Collision of cold CaF molecules: Towards evaporative cooling
Yuefeng Gu(顾跃凤), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(3): 033401.
[10] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[11] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[12] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[13] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[14] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[15] Exploring the methane combustion reaction: A theoretical contribution
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2018, 27(2): 023401.
No Suggested Reading articles found!