Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098204    DOI: 10.1088/1674-1056/ac7e3a
DATA PAPER Prev   Next  

State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies

Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃)
Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  The reactive collisions of nitrogen ion with hydrogen and its isotopic variations have great significance in the field of astrophysics. Herein, the state-to-state quantum time-dependent wave packet calculations of N$^{+}$($^{3}$P)$+{\rm HD}\to {\rm NH}^{+}$/ND$^{+} +{\rm D/H}$ reaction are carried out based on the recently developed potential energy surface [Phys. Chem. Chem. Phys. 21 22203 (2019)]. The integral cross sections (ICSs) and rate coefficients of both channels are precisely determined at the state-to-state level. The results of total ICSs and rate coefficients present a dramatic preference on the ND$^{+}$ product over the NH$^{+}$ product, conforming to the long-lived complex-forming mechanism. Product state-resolved ICSs indicate that both the product molecules are difficult to excite to higher vibrational states, and the ND$^{+}$ product has a hotter rotational state distribution. Moreover, the integral cross sections and rate coefficients are precisely determined at the state-to-state level and insights are provided about the differences between the two channels. The present results would provide an important reference for the further experimental studies at the finer level for this interstellar chemical reaction. The datasets presented in this paper, including the ICSs and rate coefficients of the two products for the title reaction, are openly available at
Keywords:  quantum dynamics      integral cross sections      rate coefficients  
Received:  25 May 2022      Revised:  20 June 2022      Accepted manuscript online:  05 July 2022
PACS:  82.20.-w (Chemical kinetics and dynamics)  
  82.20.Bc (State selected dynamics and product distribution)  
  82.20.Ej (Quantum theory of reaction cross section)  
  82.20.Xr (Quantum effects in rate constants (tunneling, resonances, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774043).
Corresponding Authors:  Maodu Chen     E-mail:

Cite this article: 

Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃) State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies 2022 Chin. Phys. B 31 098204

[1] Dalgarno A and Black J H 1976 Rep. Prog. Phys. 39 573
[2] Winnewisser G and Herbst E 1993 Rep. Prog. Phys. 56 1209
[3] Dalgarno A, Herbst E, Novick S and Klemperer W 1973 Astrophys. J. 183 L131
[4] Dislaire V, Hily-Blant P, Faure A, Maret S, Bacmann A and Pineau Des Forêts G 2012 Astron. Astrophys. 537 A20
[5] Crutcher R M and Watson W D 1976 Astrophys. J. 209 778
[6] Gittins M A and Hirst D M 1975 Chem. Phys. Lett. 35 534
[7] Peyerimhoff S D and Buenker R J 1979 Chem. Phys. 42 167
[8] Ervin K M and Armentrout P B 1987 J. Chem. Phys. 86 2659
[9] Sunderlin L S and Armentrout P B 1994 J. Chem. Phys. 100 5639
[10] Marquette J B, Rebrion C and Rowe B R 1988 J. Chem. Phys. 89 2041
[11] Adams N G and Smith D 1985 Chem. Phys. Lett. 117 67
[12] Zymak I, Hejduk M, Mulin D, Plašil R, Glosík J and Gerlich D 2013 Astrophys. J. 768 86
[13] Barlow S E, Luine J A and Dunn G H 1986 Int. J. Mass Spectrom. Ion Proc. 74 97
[14] Hansen S G, Farrar J M and Mahan B H 1980 J. Chem. Phys. 73 3750
[15] Mahan B H and Ruska W E W 1976 J. Chem. Phys. 65 5044
[16] Grozdanov T P and McCarroll R 2015 J. Phys. Chem. A 119 5988
[17] Grozdanov T P, McCarroll R and Roueff E 2016 Astron. Astrophys. 589 A105
[18] Gerlich D 1989 J. Chem. Phys. 90 3574
[19] Nyman G 1992 J. Chem. Phys. 96 3603
[20] Nyman G and Wilhelmsson U 1992 J. Chem. Phys. 96 5198
[21] Gonzalez M, Aguilar A and Sayos R 1989 Chem. Phys. 132 137
[22] Russell C L and Manolopoulos D E 1999 J. Chem. Phys. 110 177
[23] Wilhelmsson U, Siegbahn P E M and Schinke R 1992 J. Chem. Phys. 96 8202
[24] Yang Z, Wang S, Yuan J and Chen M 2019 Phys. Chem. Chem. Phys. 21 22203
[25] Mao Y, Yuan J, Yang Z and Chen M 2020 Sci. Rep. 10 3410
[26] Yuan J, Cheng D and Chen M 2014 RSC Adv. 4 36189
[27] Buren B, Yang Z and Chen M 2020 Phys. Chem. Chem. Phys. 22 3633
[28] Bai Y, Buren B, Yang Z and Chen M 2021 Chem. Phys. Lett. 764 138279
[29] Zhang P Y and Han K L 2013 J. Phys. Chem. A 117 8512
[30] Sun Z, Lin X, Lee S Y and Zhang D H 2009 J. Phys. Chem. A 113 4145
[31] Buren B, Yang Z and Chen M 2019 Chem. Phys. Lett. 723 128
[32] Yang Z, Mao Y and Chen M 2021 J. Phys. Chem. A 125 235
[33] Yang Z, Yuan J, Wang S and Chen M 2018 RSC Adv. 8 22823
[34] Xu T, Zhao J, Wang X L and Meng Q T 2019 Chin. Phys. B 28 023102
[35] Zhang D H, Wu Q and Zhang J Z H 1995 J. Chem. Phys. 102 124
[36] Sun Z, Guo H and Zhang D H 2010 J. Chem. Phys. 132 084112
[37] Buren B, Chen M, Sun Z and Guo H 2021 J. Phys. Chem. A 125 10111
[38] Zhao H, Umer U, Hu X, Xie D and Sun Z 2019 J. Chem. Phys. 150 134105
[39] Lin S Y and Guo H 2004 J. Chem. Phys. 120 9907
[40] Lee S H and Liu K 1998 Chem. Phys. Lett. 290 323
[41] Yang H, Han K L, Schatz G C, Lee S H, Liu K, Smith S C and Hankel M 2009 Phys. Chem. Chem. Phys. 11 11587
[42] Yang H, Han K L, Schatz G C, Smith S C and Hankel M 2009 J. Phys.:Conf. Ser. 185 012056
[43] Zhang J Y, Xu T, Ge Z W, Zhao J, Gao S B and Meng Q T 2020 Chin. Phys. B 29 063101
[44] De Fazio D, Aquilanti V, Cavalli S, Aguilar A and Lucas J M 2006 J. Chem. Phys. 125 133109
[45] Lee S H, Dong F and Liu K 2002 J. Chem. Phys. 116 7839
[46] Lee S H, Dong F and Liu K 2006 J. Chem. Phys. 125 133106
[47] Wang X L, Gao F, Gao S B, Zhang L L, Song Y Z and Meng Q T 2018 Chin. Phys. B 27 043104
[1] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[2] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[3] Coherent-driving-assisted quantum speedup in Markovian channels
Xiang Lu(鹿翔), Ying-Jie Zhang(张英杰), and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(2): 020301.
[4] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[5] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[6] Novel potential energy surface-based quantum dynamics of ion-molecule reaction O++D2 →OD++D
Xian-Long Wang(王宪龙), Feng Gao(高峰), Shou-Bao Gao(高守宝), Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2018, 27(4): 043104.
[7] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[8] Quantum dynamics of charge transfer on the one-dimensional lattice: Wave packet spreading and recurrence
V N Likhachev, O I Shevaleevskii, G A Vinogradov. Chin. Phys. B, 2016, 25(1): 018708.
[9] State-to-state quantum dynamics of the N(4S)+H2 (X1Σ+)→NH(X3-)+H(2S) reaction and its reaction mechanism analysis
Zhang Jing (张静), Gao Shou-Bao (高守宝), Wu Hui (吴慧), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(8): 083104.
[10] A typical slow reaction H(2S)+S2(X3Σg-)→SH(X2∏)+S(3P) on a new surface:Quantum dynamics calculations
Wei Wei (魏巍), Gao Shou-Bao (高守宝), Sun Zhao-Peng (孙兆鹏), Song Yu-Zhi (宋玉志), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2014, 23(7): 073101.
[11] Quantum dynamic behaviour in a coupled cavities system
Peng Jun(彭俊), Wu Yun-Wen(邬云文), and Li Xiao-Juan(李小娟) . Chin. Phys. B, 2012, 21(6): 060302.
[12] The influence of isotope substitution of neon atom on the integral cross sections of rotational excitation in Ne–Na2 collisions
Zang Hua-Ping(臧华平), Li Wen-Feng(李文峰), Linghu Rong-Feng(令狐荣锋), Cheng Xin-Lu(程新路), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2011, 20(2): 020301.
[13] Electron impact excitation rate coefficients of N II ion
Yang Ning-Xuan(杨宁选),Dong Chen-Zhong(董晨钟), Jiang Jun(蒋军), and Xie Lu-You(颉录有). Chin. Phys. B, 2010, 19(9): 093101.
[14] Relativistic calculation of dielectronic recombination for He-like krypton
Shi Xi-Heng (史习珩), Wang Yan-Sen (王炎森), Chen Chong-Yang (陈重阳), Gu Ming-Feng (顾明峰). Chin. Phys. B, 2005, 14(5): 959-963.
No Suggested Reading articles found!