Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080701    DOI: 10.1088/1674-1056/25/8/080701
GENERAL Prev   Next  

Study of a ternary blend system for bulk heterojunction thin film solar cells

Zubair Ahmad1, Farid Touati1, Shakoor R A2, Al-Thani N J2
1 Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
2 Center for Advanced Materials, Qatar University, Doha 2713, Qatar
Abstract  In this research, we report a bulk heterojunction (BHJ) solar cell consisting of a ternary blend system. Poly(3-hexylthiophene) P3HT is used as a donor and [6, 6]-phenyl C61-butyric acid methylester (PCBM) plays the role of acceptor whereas vanadyl 2, 9, 16, 23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO) is selected as an ambipolar transport material. The materials are selected and assembled in such a fashion that the generated charge carriers could efficiently be transported rightwards within the blend. The organic BHJ solar cells consist of ITO/PEDOT:PSS/ternary BHJ blend/Al structure. The power conversion efficiencies of the ITO/PEDOT:PSS/P3HT:PCBM/Al and ITO/PEDOT:PSS/P3HT:PCBM:VOPcPhO/Al solar cells are found to be 2.3% and 3.4%, respectively.
Keywords:  organic semiconductor      charge transport      bulk heterojunction      ternary blend  
Received:  24 January 2016      Revised:  14 April 2016      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  06.90.+v (Other topics in metrology, measurements, and laboratory procedures)  
Fund: This publication was made possible by PDRA (Grant No. PDRA1-0117-14109) from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.
Corresponding Authors:  Zubair Ahmad     E-mail:  zubairtarar@qu.edu.qa

Cite this article: 

Zubair Ahmad, Farid Touati, Shakoor R A, Al-Thani N J Study of a ternary blend system for bulk heterojunction thin film solar cells 2016 Chin. Phys. B 25 080701

[1] Cai W, Gong X and Cao Y 2010 Solar Energy Materials and Solar Cells 94 114
[2] Lilliu S, Böberl M, Sramek M, Tedde S F, Macdonald J E and Hayden O 2011 Thin Solid Films 520 610
[3] Ichikawa M, Takeuchi T, Jeon H G, Jin Y, Lee S and Kim K S 2012 Jpn. J. Appl. Phys. 51 034103
[4] Guvenc A B, Ozkan C and Ozkan M 2012 Early-Effect like Behavior in Space Charge Regions of Organic Bulk-Heterojunction Photodiodes (Cambridge:Cambridge University Press)
[5] Ferry V E, Verschuuren M A, Lare M C V, Schropp R E, Atwater H A and Polman A 2011 Nano Lett. 11 4239
[6] Ye F, Burns M J and Naughton M J 2011 "Embedded metallic nanopatterns for enhanced optical absorption", in:SPIE Solar Energy + Technology:International Society for Optics and Photonics, p. 811103
[7] Mihailetchi V D, Xie H, de Boer B, Koster L J A and Blom P W 2006 Adv. Func. Mater. 16 699
[8] Mah Abdullah S, Ahmad Z, Aziz F and Sulaiman K 2012 Org. Electron. 13 2532
[9] Ahmad Z, Suhail M H, Muhammad I I, Al-Rawi W K, Sulaiman K, Zafar Q, Hamzah A S and Shaameri Z 2013 Chin. Phys. B 22 100701
[10] Zafar Q, Ahmad Z, Sulaiman K, Hamzah A S and Rahman Z A 2014 Sensors and Actuators A:Physical 206 138
[11] Ahmad Z, Abdullah S M and Sulaiman K 2013 Measurement 46 2073
[12] Abdullah S M, Ahmad Z and Sulaiman K 2015 Procedia-Social and Behavioral Sciences 195 2135
[13] Miyake K, Uetani Y, Seike T, Kato T, Oya K, Yoshimura K and Ohnishi T 2010 R & D Report, "SUMITOMO KAGAKU" 2010 1
[14] Honda S, Yokoya S, Ohkita H, Benten H and Ito S 2011 J. Phys. Chem. C 115 11306
[15] Ahmad Z, Abdullah S M, Zafar Q and Sulaiman K 2014 J. Mod. Opt. 61 1730
[16] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
[17] Guo T F, Wen T C, L'vovich Pakhomov G, Chin X G, Liou S H, Yeh P H and Yang C H 2008 Thin Solid Films 516 3138
[18] Aziz F, Sayyad M, Ahmad Z, Sulaiman K, Muhammad M and Karimov K S 2012 Physica E:Low-dimensional Systems and Nanostructures 44 1815
[19] Abdullah S M, Ahmad Z, Aziz F and Sulaiman K 2012 Org. Electron. 13 2532
[20] Lampert M A and Mark P 1970 Current Injection in Solids (New York:Academic Press)
[21] Ballantyne A M, Wilson J S, Nelson J, Bradley D D C, Durrant J R, Heeney M, Duffy W and McCulloch I 2006 TOF mobility measurements in pristine films of P3HT:control of hole injection and influence of film thickness, eds. Zakya H K and Paul A L, SPIE, p. 633408
[22] Khan S M, Sayyad M H and Karimov K S 2010 Ionics 17 307
[1] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[2] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[3] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[4] Thin-film growth behavior of non-planar vanadium oxide phthalocyanine
Tian-Jiao Liu(刘天娇), Hua-Yan Xia(夏华艳), Biao Liu(刘标), Tim S Jones, Mei Fang(方梅), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2019, 28(8): 088101.
[5] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[6] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[7] Photodetectors based on small-molecule organic semiconductor crystals
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜). Chin. Phys. B, 2019, 28(3): 038102.
[8] How to characterize capacitance of organic optoelectronic devices accurately
Hao-Miao Yu(于浩淼), Yun He(何鋆). Chin. Phys. B, 2018, 27(6): 067202.
[9] Phase transition and charge transport through a triple dot device beyond the Kondo regime
Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东). Chin. Phys. B, 2018, 27(10): 108503.
[10] Coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions with the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field
Li-Jie Huang(黄立捷), Lian Liu(刘恋), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2017, 26(7): 077201.
[11] A simulation study on p-doping level of polymer host material in P3HT: PCBM bulk heterojunction solar cells
Hossein Movla, Mohammad Babazadeh. Chin. Phys. B, 2017, 26(4): 048802.
[12] Alternating current characterization of nano-Pt(II) octaethylporphyrin (PtOEP) thin film as a new organic semiconductor
M Dongol, M M El-Nahass, A El-Denglawey, A A Abuelwafa, T Soga. Chin. Phys. B, 2016, 25(6): 067201.
[13] Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy
Wei Dang(党伟), Qing Liao(廖清), Peng-Cheng Mao(毛鹏程), Hong-Bing Fu(付红兵), Yu-Xiang Weng(翁羽翔). Chin. Phys. B, 2016, 25(5): 054207.
[14] Quantum dynamics of charge transfer on the one-dimensional lattice: Wave packet spreading and recurrence
V N Likhachev, O I Shevaleevskii, G A Vinogradov. Chin. Phys. B, 2016, 25(1): 018708.
[15] Electronic mobility in the high-carrier-density limit ofion gel gated IDTBT thin film transistors
Bao Bei (包蓓), Shao Xian-Yi (邵宪一), Tan Lu (谭璐), Wang Wen-He (王文河), Wu Yue-Shen (吴越珅), Wen Li-Bin (文理斌), Zhao Jia-Qing (赵家庆), Tang Wei (唐伟), Zhang Wei-Min (张为民), Guo Xiao-Jun (郭小军), Wang Shun (王顺), Liu Ying (刘荧). Chin. Phys. B, 2015, 24(9): 098103.
No Suggested Reading articles found!