Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 017201    DOI: 10.1088/1674-1056/22/1/017201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Interlayer transport of electron in bilayer graphene with phonon-induced lattice distortion in the presence of biased potential

He Liang-Ming (何良明)
College of Science, Guangxi University for Nationalities, Nanning 530006, China
Abstract  The interlayer transport of electron in bilayer graphene influenced by phonon in the presence of biased potential is investigated using the tight-binding approach. The in-plane optical mode E2g and out-of-plane optical mode B1g associated with the applied biased potential are considered to compute and discuss the interlayer transport probability of an electron initially localized on the bottom layer at the Dirac point in the Brillouin zone. Without the biased potential, the interlayer transport probability is equal to 0.5 regardless of the phonon displacement except for a few special cases. Applying a biased potential to the layers, we find that in different phonon mode the function of the transport probability with respect to applied biased potential and phonon displacement is complex and various, but on the whole the transport probability decreases with the increase in the absolute value of the applied biased potential. These phenomena are discussed in detail in this paper.
Keywords:  electronic transport      conductivity of specific materials  
Received:  10 April 2012      Revised:  28 June 2012      Accepted manuscript online: 
PACS:  72.10.Di (Scattering by phonons, magnons, and other nonlocalized excitations)  
  72.80.-r (Conductivity of specific materials)  
Fund: Project supported by the Department of Education of Guangxi, China (Grant No. 200911MS78).
Corresponding Authors:  He Liang-Ming     E-mail:  hlm66225@sohu.com

Cite this article: 

He Liang-Ming (何良明) Interlayer transport of electron in bilayer graphene with phonon-induced lattice distortion in the presence of biased potential 2013 Chin. Phys. B 22 017201

[1] McCann E and Falko V I 2006 Phys. Rev. Lett. 96 086805
[2] Checkelsky J G, Li L and Ong N P 2008 Phys. Rev. Lett. 100 206801
[3] Hasegawa Y and Kohmoto M 2006 Phys. Rev. B 74 155415
[4] Xu X G, Zhang C, Xu G J and Cao J C 2011 Chin. Phys. B 20 27201
[5] CastroNeto A H, CastroNeto, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[6] Allen M T, Martin J and Yacoby A 2012 Nature Commun. 3 934
[7] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[8] Mak K F, Lui C H, Shan J and Heinz T F 2009 Phys. Rev. Lett. 102 256405
[9] Ochoa H, Castro E V, Katsnelson M I and Guinea F 2011 Phys. Rev. B 83 235416
[10] Cappelluti E and Profeta G 2012 Phys. Rev. B 85 205436
[11] Min H, Bistritzer R, Su J J and MacDonald A H 2008 Phys. Rev. B 78 121401(R)
[12] Eisenstein J P and MacDonald A H 2004 Nature 432 691
[13] Novoselov K S, McCann E, Morozov S V, Fal'ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nature Phys. 2 177
[14] Mańes J L, Guinea F and Vozmediano M A H 2007 Phys. Rev. B 75 155424
[15] Samsonidze Ge G, Barros E B, Saito R, Jiang J, Dresselhaus G and Dresselhaus M S 2007 Phys. Rev. B 75 155420
[16] Slonczewski J C and Weiss P R 1958 Phys. Rev. 109 272
[17] Semenoff G W 1984 Phys. Rev. Lett. 53 2449
[18] Yury P B, Valentin F, Sergey S and Franco N 2009 Phys. Rev. B 79 075123
[19] Khan F S and Allen P B 1984 Phys. Rev. B 29 3341
[1] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[2] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[3] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[4] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[5] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[6] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[7] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[8] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[9] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[10] Electronic states and spin-filter effect in three-dimensional topological insulator Bi2Se3 nanoribbons
Genhua Liu(刘根华), Pingguo Xiao(肖平国), Piaorong Xu(徐飘荣), Huiying Zhou(周慧英), Guanghui Zhou(周光辉). Chin. Phys. B, 2018, 27(1): 017304.
[11] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[12] Electronic transport properties of single-wall boron nanotubes
Xinyue Dai(代新月), Yi Zhou(周毅), Jie Li(李洁), Lishu Zhang(张力舒), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(8): 087310.
[13] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[14] Generation of Fabry-Pérot oscillations and Dirac state in two-dimensional topological insulators by gate voltage
Bin Xu(徐斌), Rao Li(李饶), Hua-Hua Fu(傅华华). Chin. Phys. B, 2017, 26(5): 057303.
[15] Quantum transport through a Z-shaped silicene nanoribbon
A Ahmadi Fouladi. Chin. Phys. B, 2017, 26(4): 047304.
No Suggested Reading articles found!