Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 017202    DOI: 10.1088/1674-1056/22/1/017202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrical characteristics of AlInN/GaN HEMTs under cryogenic operation

Zhang Xue-Feng (张雪锋)a b, Wang Li (王莉)b, Liu Jie (刘杰)b, Wei Lai (魏崃)b, Xu Jian (许键)b
a School of Electronics and Information, Nantong University, Nantong 226019, China;
b Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
Abstract  Electrical properties of AlInN/GaN high-electron mobility transistor (HEMT) on a sapphire substrate are investigated in a cryogenic temperature range from 295 K down to 50 K. It is shown that drain saturation current and conductance increase as transistor operation temperature decreases. Self-heating effect is observed over the entire range of temperature under high power consumption. The dependence of channel electron mobility on electron density is investigated in detail. It is found that aside from Coulomb scattering, electrons that have been pushed away from the AlInN/GaN interface into bulk GaN substrate at a large reverse gate voltage are also responsible for the electron mobility drop with the decrease of electron density.
Keywords:  AlInN/GaN heterostructure      high-electron mobility transistor (HEMT)      cryogenic temperature      two-dimensional electron gas (2DEG) mobility  
Received:  11 May 2012      Revised:  11 June 2012      Accepted manuscript online: 
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61204018).
Corresponding Authors:  Xu Jian     E-mail:  jianxu@engr.psu.edu

Cite this article: 

Zhang Xue-Feng (张雪锋), Wang Li (王莉), Liu Jie (刘杰), Wei Lai (魏崃), Xu Jian (许键) Electrical characteristics of AlInN/GaN HEMTs under cryogenic operation 2013 Chin. Phys. B 22 017202

[1] Sarazin N, Morvan E, di Forte Poisson M A, Oualli M, Gaquiére C, Jardel O, Drisse O, Tordjman M, Magis M and Delage S L 2010 IEEE Electron Dev. Lett. 31 11
[2] Duan B X and Yang Y T 2012 Chin. Phys. B 21 057201
[3] Tirelli S, Marti D, Sun H F, Alt A R, Carlin J F C, Grandjean N and Bolognesi C R 2011 IEEE Electron Dev. Lett. 32 1364
[4] Chabak K D, Trejo M, Crespo A, Walker D E, Yang J, Gaska R, Kossler M, Gillespie J K, Jessen G H, Trimble V and Via G D 2010 IEEE Electron Dev. Lett. 31 561
[5] Mao W, Yang C, Hao Y, Zhang J C, Liu H X , Bi Z W, Xu S R, Xue J S, Ma X H, Wang C, Yang L A, Zhang J F and Kuang X W 2011 Chin. Phys. B 20 017203
[6] Sattu A, Billingsley D, Deng J, Yang J, Gaska R, Shur M and Simin G 2011 The 69th Device Research Conference June 20-22, 2011 University of California, Santa Barbara, CA, USA, p. 55
[7] Vetury R, Zhang Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 560
[8] Leach J H, Wu M, Ni X, Li X, Ozgur U and Morkoc H 2010 Phys. Status Solidi A 207 211
[9] Mikulics M, Stoklas R, Dadgar A, Gregusová D, Novák J, Grützmacher D, Krost A and Kordos P 2010 Appl. Phys. Lett. 97 173505
[10] Lin C H, Wang W K, Lin P C, Lin C K, Chang Y J and Chan Y J 2005 IEEE Electron Dev. Lett. 26 710
[11] Endoh A, Watanabe I, Yamashita1 Y, Mimura T and Matsui T 2009 Phys. Status Solidi C 6 S964
[12] Jinwey Y, Xuhong H, Deng J Y, Gaska R, Shur M and Simin G 2009 Proceedings of the International Semiconductor Device Research Symposium December 9-11, 2009 College Park, Maryland, USA, p. 1
[13] Morkoc H 2008 Handbook of Nitride Semiconductors and Devices (vol. 2) (Weinheim: Wiley-VCH)
[14] Qiao D, Yu L S, Jia L, Asbeck P M, Lau S S and Haynes T E 2002 Appl. Phys. Lett. 80 992
[15] Gaska R, Osinsky A, Yang J W and Shur M S 1998 IEEE Electron Dev. Lett. 19 89
[16] Pozzovivo G, Kuzmik J, Golka S, Schrenk W, Strasser G, Pogany D, Cico K, Tapajna M, Frohich K, Carlin J F, Gonschorek M, Feltin E and Grandjean N 2007 Appl. Phys. Lett. 91 043509
[17] Levinshtein M E, Ivanov P A, Asif Khan M, Simin G, Zhang J, Hu X and Yang J 2003 Semicond. Sci. Technol. 18 666
[18] Tulek R, Iygaz A, Gokden S, Teke A, Ozturk M K and Kasap M 2009 J. Appl. Phys. 105 13706
[19] Dang X Z, Asbeck P M, Yu E T, Sullivan G J, Chen M Y, McDermott B T, Boutros K S and Redwing J M 1999 Appl. Phys. Lett. 74 3890
[20] Ridley B K, Foutz B E and Eastman L F 2000 Phys. Rev. B 61 16862
[21] Marso M, Bernat J, Javorka P and Kordos P 2004 Appl. Phys. Lett. 84 2928
[1] Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs
Xian-Le Zhang(张先乐), Peng-Ying Chang(常鹏鹰), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦). Chin. Phys. B, 2020, 29(3): 038505.
[2] Effect of cryogenic temperature characteristics on 0.18-μm silicon-on-insulator devices
Bingqing Xie(解冰清), Bo Li(李博), Jinshun Bi(毕津顺), Jianhui Bu(卜建辉), Chi Wu(吴驰), Binhong Li(李彬鸿), Zhengsheng Han(韩郑生), Jiajun Luo(罗家俊). Chin. Phys. B, 2016, 25(7): 078501.
No Suggested Reading articles found!