Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087310    DOI: 10.1088/1674-1056/26/8/087310
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic transport properties of single-wall boron nanotubes

Xinyue Dai(代新月), Yi Zhou(周毅), Jie Li(李洁), Lishu Zhang(张力舒), Zhenyang Zhao(赵珍阳), Hui Li(李辉)
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
Abstract  

Electronic transport properties of single-wall boron nanotube (BNT) with different chiralities, diameters, some of which are encapsulated with silicon, germanium, and boron nanowires are theoretically studied. The results indicate that the zigzag (3, 3) BNT has more electronic transmission channels than the armchair (5, 0) BNT because of its unique structure distortion. Nanowires encapsulated in the BNT can enhance the conductance of the BNT to some extent by providing a significant electronic transmission channel to the BNT. The effect of the structure of nanowires and the diameter of BNTs on the transport properties has also been discussed. The results of this paper can enrich the knowledge of the electron transport of the BNT and provide theoretical guidance for subsequent experimental study.

Keywords:  electronic transport      boron nanoube      BNT  
Received:  06 March 2017      Revised:  21 April 2017      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51671114) and the Special Funding in the Project of the Taishan Scholar Construction Engineering and National Key Research Program of China (Grant No. 2016YFB0300501).

Corresponding Authors:  Hui Li     E-mail:  lihuilmy@hotmail.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Xinyue Dai(代新月), Yi Zhou(周毅), Jie Li(李洁), Lishu Zhang(张力舒), Zhenyang Zhao(赵珍阳), Hui Li(李辉) Electronic transport properties of single-wall boron nanotubes 2017 Chin. Phys. B 26 087310

[1] Bockrath M, Cobden D H, McEuen P L, Chopra N G, Zettl A, Thess A and Smalley R E 1997 Science 275 1922
[2] Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E and Weisman R B 2002 Science 298 2361
[3] Chen Y, Zhang H, Liu X G, Xia L S and Yang A M 2011 Acta Phys. Sin. 60 080702 (in Chinese)
[4] Baughman R H, Zakhidov A A and de Heer W A 2002 Science 297 787
[5] Tans S J, Verschueren A R and Dekker C 1998 Nature 393 49
[6] Dresselhaus M S, Dresselhaus G and Jorio A 2004 Ann. Rev. Mater. Res. 34 247
[7] Boustani I and Quandt A 1997 Europhys Lett. 39 527
[8] Ciuparu D, Klie R F, Zhu Y and Pfefferle L 2004 J. Phys. Chem. B 108 3967
[9] Gindulyte A, Lipscomb W N and Massa L 1998 Inorg. Chem. 37 6544
[10] Sebetci A, Mete E and Boustani I 2008 J. Phys. Chem. Solids 69 2004
[11] Kunstmann J and Quandt A 2006 Phys. Rev. B 74 35413
[12] Zhang D, Zhu R and Liu C 2006 J. Mater. Chem. 16 2429
[13] Kunstmann J, Bezugly V, Rabbel H, Mmeli M H and Cuniberti G 2014 Adv. Funct. Mater. 24 4127
[14] Tang H and Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501
[15] Singh A K, Sadrzadeh A and Yakobson B I 2008 Nano Lett. 8 1314
[16] Yu X, Li L, Xu X and Tang C 2012 J. Phys. Chem. C 116 20075
[17] Bezugly V, Kunstmann J, Grundkotter-Stock B, Frauenheim T, Niehaus T and Cuniberti G 2011 ACS Nano 5 4997
[18] Yang X, Ding Y and Ni J 2008 Phys. Rev. B 77 041402
[19] Szwacki N G and Tymczak C J 2010 Chem. Phys. Lett. 494 80
[20] Tang H and Ismail-Beigi S 2010 Phys. Rev. B 82 115412
[21] Cao H Q, Xu Z, Sang H, Sheng D and Tie C Y 2001 Adv. Mater. 13 121
[22] Bao J, Xu D, Zhou Q, Xu Z, Feng Y and Zhou Y 2002 Chem. Mater. 14 4709
[23] Choi W Y, Kang J W and Hwang H J 2003 Phys. Rev. B 68 193405
[24] Weissmann M, Garc I A G, Kiwi M, Ram I Rez R and Fu C 2006 Phys. Rev. B 73 125435
[25] Zhang X Q, Li H and Liew K M 2007 J. Appl. Phys. 102 73709
[26] Patel R B, Chou T and Iqbal Z 2015 J. Nanomater. 16 14
[27] Patel R B 2013 Synthesis and characterization of novel boron-based nanostructures and composites (New Jersey: Institute of Technology)
[28] Liu J and Iqbal Z 2011 MRS Proceedings (Cambridge: Cambridge University Press) p. mrsf10-1307
[29] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[32] Vanderbilt D 1990 Phys. Rev. B 41 7892
[33] Zienert A, Schuster J and Gessner T 2013 J. Phys. Chem. A 117 3650
[34] Yuan J, Hu Y, Liao J, Zhong J and Mao Y 2016 Mater. Design 95 641
[35] Jain S K and Srivastava P 2011 Comput. Mater. Sci. 50 3038
[1] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[2] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[3] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[4] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[5] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[6] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[7] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[8] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[9] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[10] Electronic states and spin-filter effect in three-dimensional topological insulator Bi2Se3 nanoribbons
Genhua Liu(刘根华), Pingguo Xiao(肖平国), Piaorong Xu(徐飘荣), Huiying Zhou(周慧英), Guanghui Zhou(周光辉). Chin. Phys. B, 2018, 27(1): 017304.
[11] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[12] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[13] Generation of Fabry-Pérot oscillations and Dirac state in two-dimensional topological insulators by gate voltage
Bin Xu(徐斌), Rao Li(李饶), Hua-Hua Fu(傅华华). Chin. Phys. B, 2017, 26(5): 057303.
[14] Quantum transport through a Z-shaped silicene nanoribbon
A Ahmadi Fouladi. Chin. Phys. B, 2017, 26(4): 047304.
[15] Photon-assisted and spin-dependent shot noise in magnetic-field tunable ZnSe/Zn1-xMnxSe structures
Chun-Lei Li(李春雷), Yong Guo(郭永), Xiao-Ming Wang(王小明), Yuan Lv(律原). Chin. Phys. B, 2017, 26(2): 027301.
No Suggested Reading articles found!