Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067102    DOI: 10.1088/1674-1056/abdb22

Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain

Xiao-Shu Guo(郭小姝)1,2 and San-Dong Guo(郭三栋)1,2,†
1 School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
2 Key Laboratory of Advanced Semiconductor Devices and Materials, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  Experimentally synthesized MoSi2N4 (Science 369 670 (2020)) is a piezoelectric semiconductor. Here, we systematically study the large biaxial (isotropic) strain effects (0.90-1.10) on electronic structures and transport coefficients of monolayer MoSi2N4 by density functional theory (DFT). With a/a0 from 0.90 to 1.10, the energy band gap firstly increases, and then decreases, which is due to transformation of conduction band minimum (CBM). Calculated results show that the MoSi2N4 monolayer is mechanically stable in the considered strain range. It is found that the spin-orbital coupling (SOC) effects on Seebeck coefficient depend on the strain. In unstrained MoSi2N4, the SOC has neglected influence on Seebeck coefficient. However, the SOC can produce important influence on Seebeck coefficient, when the strain is applied, for example, 0.96 strain. The compressive strain can change relative position and numbers of conduction band extrema (CBE), and then the strength of conduction bands convergence can be enhanced, to the benefit of n-type ZTe. Only about 0.96 strain can effectively improve n-type ZTe. Our works imply that strain can effectively tune the electronic structures and transport coefficients of monolayer MoSi2N4, and can motivate farther experimental exploration.
Keywords:  MoSi2N4      electronic transport      2D materials  
Received:  23 November 2020      Revised:  29 December 2020      Accepted manuscript online:  13 January 2021
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the Natural Science Basis Research Plan in Shaanxi Province of China (Grant No. 2021JM-456).
Corresponding Authors:  San-Dong Guo     E-mail:

Cite this article: 

Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋) Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain 2021 Chin. Phys. B 30 067102

[1] Novoselov K S, Geim A K, Morozov S V et al. 2004 Science 306 666
[2] Mak K F and Shan J 2016 Nat. Photon. 10 216
[3] Blonsky M N, Zhuang H L, Singh A K and Hennig R G 2015 ACS Nano 9 9885
[4] Hui Z Q, Xu W X, Li X H et al. 2019 Nanoscale 11 6045
[5] Wu W and Wang Z L 2016 Nat. Rev. Mater. 1 16031
[6] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[7] Lu A Y, Zhu H Y, Xiao J et al. 2017 Nat. Nanotechnol. 12 744
[8] Fei R X, Li W B, Li J and Yang L 2015 Appl. Phys. Lett. 107 173104
[9] Zhang S L et al. 2016 Angew. Chem. 128 1698
[10] Blonsky M N, Zhuang H L, Singh A K and Hennig R G 2015 ACS Nano 9 9885
[11] Fei R X, Li W B, Li J and Yang L 2015 Appl. Phys. Lett. 107 173104
[12] Duerloo K N, Ong M T and Reed E J 2012 J. Phys. Chem. Lett. 3 2871
[13] Chen Y, Liu J Y, Yu J B, Guo Y G and Sun Q 2019 Phys. Chem. Chem. Phys. 21 1207
[14] Ji J P et al. 2016 Nat. Commun. 7 13352
[15] Lv H Y, Lu W J, Shao D F, Lub H Y and Sun Y P 2016 J. Mater. Chem. C 4 4538
[16] Guo S D 2016 J. Mater. Chem. C 4 9366
[17] Scalise E, Houssa M, Pourtois G, Afanas'ev V and Stesmans A 2012 Nano Res. 5 43
[18] Guo S D 2016 Comput. Mater. Sci. 123 8
[19] Liu H K, Qin G Z, Lin Y and Hu M 2016 Nano Lett. 16 3831
[20] Jena N, Dimple, Behere S D and Sarkar A D 2017 J. Phys. Chem. C 121 9181
[21] Guo S D, Guo X S, Zhang Y Y and Luo K 2020 J. Alloys Compd. 822 153577
[22] Dimple, Jena N, Rawat A, Ahammed R, Mohanta M K and Sarkar A D 2018 J. Mater. Chem. A 6 24885
[23] Guo S D, Mu W Q and Zhu Y T 2021 J. Phys. Chem. Solids 151 109896
[24] Hong Y L, Liu Z B, Wang L et al. 2020 Science 369 670
[25] Wang L, Shi Y P, Liu M F et al. 2020 arXiv:2008.02981
[26] Guo S D, Zhu Y T, Mu W Q and Ren W C 2021 Europhys. Lett. 132 57002
[27] Guo S D, Zhu Y T, Mu W Q, Wang L and Chen X Q 2021 Comput. Mater. Sci. 188 110223
[28] Guo S D, Mu W Q, Zhu Y T and Chen X Q 2020 Phys. Chem. Chem. Phys. 22 28359
[29] Li S, Wu W K, Feng X L et al. 2020 arXiv:2009.13253
[30] Yang C, Song Z G, Sun X T and Lu J 2020 arXiv:2010.10764
[31] Guo S D, Mu W Q, Zhu Y T, Han R Y and Ren W C 2021 J. Mater. Chem. C 9 2464
[32] Bhowmick S and Shenoy V B 2006 J. Chem. Phys. 125 164513
[33] Kresse G 1995 J. Non-Cryst. Solids 193 222
[34] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[37] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39]Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[40] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, an Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz Technische Universityät Wien, Austria)
[41] Zhang S L, Xie M Q, Cai B et al. 2016 Phys. Rev. B 93 245303
[42] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727
[43] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
[44] Guo S D and Dong J 2018 Semicond. Sci. Technol. 33 085003
[45] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Phys. Rev. B 85 125428
[1] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[2] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[3] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[4] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[5] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[6] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[7] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[8] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[9] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[10] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[11] Raman spectroscopy characterization of two-dimensional materials
Fang Liang(梁芳), Hejun Xu(徐何军), Xing Wu(吴幸), Chaolun Wang(王超伦), Chen Luo(骆晨), Jian Zhang(张健). Chin. Phys. B, 2018, 27(3): 037802.
[12] Electronic states and spin-filter effect in three-dimensional topological insulator Bi2Se3 nanoribbons
Genhua Liu(刘根华), Pingguo Xiao(肖平国), Piaorong Xu(徐飘荣), Huiying Zhou(周慧英), Guanghui Zhou(周光辉). Chin. Phys. B, 2018, 27(1): 017304.
[13] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[14] Electronic transport properties of single-wall boron nanotubes
Xinyue Dai(代新月), Yi Zhou(周毅), Jie Li(李洁), Lishu Zhang(张力舒), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(8): 087310.
[15] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
No Suggested Reading articles found!