Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 098509    DOI: 10.1088/1674-1056/26/9/098509
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons

Kai-Wei Yang(杨开巍)1, Ming-Jun Li(李明君)1, Xiao-Jiao Zhang(张小姣)2, Xin-Mei Li(李新梅)1, Yong-Li Gao(高永立)1,3, Meng-Qiu Long(龙孟秋)1
1 Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China;
2 Physical Science and Technology College of Yichun University, Yichun 336000, China;
3 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
Abstract  By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons (aAsNRs). Our results show that the spin-metal and spin-semiconductor properties can be observed in aAsNRs with different widths. We also find that there is nearly 100% bipolar spin-filtering behavior in the aAsNR-based device with antiparallel spin configuration. Moreover, rectifying behavior and giant magnetoresistance are found in the device. The corresponding physical analyses have been given.
Keywords:  armchair arsenene nanoribbons      spin-dependent electronic transport property      spin-polarized density-functional theory      bipolar spin-filtering behavior  
Received:  20 March 2017      Revised:  06 June 2017      Accepted manuscript online: 
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21673296 and 11334014), the Science and Technology Plan of Hunan Province, China (Grant No. 2015RS4002), and the Postdoctoral Science Foundation of Central South University, China.
Corresponding Authors:  Ming-Jun Li, Meng-Qiu Long     E-mail:  limingjun@csu.edu.cn;mqlong@csu.edu.cn

Cite this article: 

Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋) Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons 2017 Chin. Phys. B 26 098509

[1] Zhang S L, Yan Z, Li Y F, Chen Z F and Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112
[2] Zhang S L, Hu Y H, Hu Z Y, Cai B and Zeng H B 2015 Appl. Phys. Lett. 107 022102
[3] Kou L Z, Ma Y D, Tan X, Frauenheim T, Du A and Smith S 2015 J. Phys. Chem. C 119 6918
[4] Kamal C and Ezawa M 2015 Phys. Rev. B 91 05423
[5] Wang Y and Ding Y 2015 J. Phys.: Condens. Matter 27 225304
[6] Majid Z, Mehdi S, Sarsari I, Pourfath M and Donadio D 2016 Phys. Rev. B 93 085424
[7] Zhang S L, Xie X Q, Li F Y, Li Z Y, Kan E, Liu W, Chen Z F and Zeng H B 2015 Angew. Chem. Int. Ed. 55 1666
[8] Zhang Z Y, Xie J F, Yang D Z, Si M S and Xue D S 2014 Appl. Phys. Express 8 055201
[9] Han J W, Xie J F, Zhang Z Y, Yang D Z, Si M S and Xue D S 2015 Appl. Phys. Express 8 4
[10] Norman N C 1998 Chemistry of Arsenic, Antimony, and Bismuth (Springer Science & Business Media)
[11] Zhu Z, Guan J and Tomanek D 2015 Phys. Rev. B 91 161404
[12] Cao H, Yu Z and Lu P 2015 Superlattice Microst. 86 501
[13] Wang Y P, Zhang C W, Ji W X, Zhang R W, Li P, Wang P J, Ren M J, Chen X L and Yuan M 2016 J. Phys. D: Appl. Phys. 49 055305
[14] Wang Y P, Ji W X, Zhang C W, Li P, Ren M J, Chen X L, Yuan M and Wang P J 2015 Sci. Rep. 6 20342
[15] Zhang H, Ma Y and Chen Z 2015 Nanoscale 7 19152
[16] Wang C, Xia Q, Nie Y Z and Guo G H 2016 AIP Advances 6 035204
[17] Du J, Xia C X, An Y P, Wang T X and Jia Y 2016 J. Mater. Sci. 51 9504
[18] Wang Y P, Zhang C W, Ji W X and Wang P J 2015 Appl. Phys. Express 8 065202
[19] Li Z J, Xu W, Yu Y Q, Du H Y, Zhen K, Wang J, Luo L B, Qiu H L and Yang X B 2016 J. Mater. Chem. C 4 362
[20] Tsai H S, Wang S W, Hsiao C H, Chen C W, Yang H O, Chueh Y L, Kuo H C and Liang J H 2016 Chem. Mater. 28 425
[21] Zhang Z Y, Xie J F, Yang D Z, Wang Y H, Xue D S and Si M S 2014 Eprint Arxiv. 8
[22] Wang Y and Ding Y 2015 Nanoscale Res. Lett. 10 955
[23] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[24] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[25] Buttiker M, Imry Y, Landouer R and Pinhas S 1985 Phys. Rev. B 31 6207
[26] Kim W Y and Kim K S 2008 Nat. Nanotech. 3 408
[27] Li M J, Zhang D, Gao Y L, Cao C and Long M Q 2017 Org. Electron. 44 168
[28] Zhang D, Long M Q, Zhang X J, Ouyang F P and Li M J 2015 J. Appl. Phys. 117 014311
[29] Li X M, Long M Q, Cui L L, Xiao J, Zhang X J, Zhang D and Xu H 2014 Phys. Lett. A 378 2701
[30] Li X M, Long M Q, Cui L L, Xiao J and Xu H 2014 Chin. Phys. B 23 047307
[31] Cui L L, Long M Q, Zhang X J, Li X M, Zhang D and Yang B C 2016 Phys. Lett. A 380 730
[32] Zhang D, Long M Q, Zhang X J, Cao C, Xu H, Li M J and Chen K S 2014 Chem. Phys. Lett. 616 178
[33] An L P and Liu N H 2012 New Carbon Mater 27 181
[34] Zhu Z, Li C X, Zhang Z H 2016 Acta Phys. Sin. 65 118501 (in Chinese)
[35] Solomon G C, Herrmann C, Hansen T, Mujica V and Ratner A 2010 Nat. Chem. 2 223
[1] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[2] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[3] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[4] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[5] Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field
Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳). Chin. Phys. B, 2022, 31(10): 100501.
[6] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[7] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[8] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[9] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[10] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[11] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[12] Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction
Yi Guo(郭逸), Peng Zhao(赵朋), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(4): 047202.
[13] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[14] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[15] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
No Suggested Reading articles found!