INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons |
Kai-Wei Yang(杨开巍)1, Ming-Jun Li(李明君)1, Xiao-Jiao Zhang(张小姣)2, Xin-Mei Li(李新梅)1, Yong-Li Gao(高永立)1,3, Meng-Qiu Long(龙孟秋)1 |
1 Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China; 2 Physical Science and Technology College of Yichun University, Yichun 336000, China; 3 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA |
|
|
Abstract By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons (aAsNRs). Our results show that the spin-metal and spin-semiconductor properties can be observed in aAsNRs with different widths. We also find that there is nearly 100% bipolar spin-filtering behavior in the aAsNR-based device with antiparallel spin configuration. Moreover, rectifying behavior and giant magnetoresistance are found in the device. The corresponding physical analyses have been given.
|
Received: 20 March 2017
Revised: 06 June 2017
Accepted manuscript online:
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21673296 and 11334014), the Science and Technology Plan of Hunan Province, China (Grant No. 2015RS4002), and the Postdoctoral Science Foundation of Central South University, China. |
Corresponding Authors:
Ming-Jun Li, Meng-Qiu Long
E-mail: limingjun@csu.edu.cn;mqlong@csu.edu.cn
|
Cite this article:
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋) Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons 2017 Chin. Phys. B 26 098509
|
[1] |
Zhang S L, Yan Z, Li Y F, Chen Z F and Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112
|
[2] |
Zhang S L, Hu Y H, Hu Z Y, Cai B and Zeng H B 2015 Appl. Phys. Lett. 107 022102
|
[3] |
Kou L Z, Ma Y D, Tan X, Frauenheim T, Du A and Smith S 2015 J. Phys. Chem. C 119 6918
|
[4] |
Kamal C and Ezawa M 2015 Phys. Rev. B 91 05423
|
[5] |
Wang Y and Ding Y 2015 J. Phys.: Condens. Matter 27 225304
|
[6] |
Majid Z, Mehdi S, Sarsari I, Pourfath M and Donadio D 2016 Phys. Rev. B 93 085424
|
[7] |
Zhang S L, Xie X Q, Li F Y, Li Z Y, Kan E, Liu W, Chen Z F and Zeng H B 2015 Angew. Chem. Int. Ed. 55 1666
|
[8] |
Zhang Z Y, Xie J F, Yang D Z, Si M S and Xue D S 2014 Appl. Phys. Express 8 055201
|
[9] |
Han J W, Xie J F, Zhang Z Y, Yang D Z, Si M S and Xue D S 2015 Appl. Phys. Express 8 4
|
[10] |
Norman N C 1998 Chemistry of Arsenic, Antimony, and Bismuth (Springer Science & Business Media)
|
[11] |
Zhu Z, Guan J and Tomanek D 2015 Phys. Rev. B 91 161404
|
[12] |
Cao H, Yu Z and Lu P 2015 Superlattice Microst. 86 501
|
[13] |
Wang Y P, Zhang C W, Ji W X, Zhang R W, Li P, Wang P J, Ren M J, Chen X L and Yuan M 2016 J. Phys. D: Appl. Phys. 49 055305
|
[14] |
Wang Y P, Ji W X, Zhang C W, Li P, Ren M J, Chen X L, Yuan M and Wang P J 2015 Sci. Rep. 6 20342
|
[15] |
Zhang H, Ma Y and Chen Z 2015 Nanoscale 7 19152
|
[16] |
Wang C, Xia Q, Nie Y Z and Guo G H 2016 AIP Advances 6 035204
|
[17] |
Du J, Xia C X, An Y P, Wang T X and Jia Y 2016 J. Mater. Sci. 51 9504
|
[18] |
Wang Y P, Zhang C W, Ji W X and Wang P J 2015 Appl. Phys. Express 8 065202
|
[19] |
Li Z J, Xu W, Yu Y Q, Du H Y, Zhen K, Wang J, Luo L B, Qiu H L and Yang X B 2016 J. Mater. Chem. C 4 362
|
[20] |
Tsai H S, Wang S W, Hsiao C H, Chen C W, Yang H O, Chueh Y L, Kuo H C and Liang J H 2016 Chem. Mater. 28 425
|
[21] |
Zhang Z Y, Xie J F, Yang D Z, Wang Y H, Xue D S and Si M S 2014 Eprint Arxiv. 8
|
[22] |
Wang Y and Ding Y 2015 Nanoscale Res. Lett. 10 955
|
[23] |
Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
|
[24] |
Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
|
[25] |
Buttiker M, Imry Y, Landouer R and Pinhas S 1985 Phys. Rev. B 31 6207
|
[26] |
Kim W Y and Kim K S 2008 Nat. Nanotech. 3 408
|
[27] |
Li M J, Zhang D, Gao Y L, Cao C and Long M Q 2017 Org. Electron. 44 168
|
[28] |
Zhang D, Long M Q, Zhang X J, Ouyang F P and Li M J 2015 J. Appl. Phys. 117 014311
|
[29] |
Li X M, Long M Q, Cui L L, Xiao J, Zhang X J, Zhang D and Xu H 2014 Phys. Lett. A 378 2701
|
[30] |
Li X M, Long M Q, Cui L L, Xiao J and Xu H 2014 Chin. Phys. B 23 047307
|
[31] |
Cui L L, Long M Q, Zhang X J, Li X M, Zhang D and Yang B C 2016 Phys. Lett. A 380 730
|
[32] |
Zhang D, Long M Q, Zhang X J, Cao C, Xu H, Li M J and Chen K S 2014 Chem. Phys. Lett. 616 178
|
[33] |
An L P and Liu N H 2012 New Carbon Mater 27 181
|
[34] |
Zhu Z, Li C X, Zhang Z H 2016 Acta Phys. Sin. 65 118501 (in Chinese)
|
[35] |
Solomon G C, Herrmann C, Hansen T, Mujica V and Ratner A 2010 Nat. Chem. 2 223
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|