Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 016802    DOI: 10.1088/1674-1056/22/1/016802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Methane adsorption on graphite(0001) films: a first-principles study

He Man-Chao (何满潮), Zhao Jian (赵健)
State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
Abstract  Using first-principles methods, we have systematically investigated the electronic density of states, work function, and adsorption energy of the methane molecule adsorbed on graphite(0001) films. The surface energy and the interlayer relaxation of the clean graphite(0001) as a function of the thickness of the film were also studied. The results showed that the interlayer relaxation is small due to the weak interaction between the neighboring layers. The one-fold top site is found most favourable on substrate for methane with the adsorption energy of -133 meV. For the adsorption with different adsorption heights above the graphite film with four layers, the methane is found to prefer to appear at about 3.21 mÅ above the graphite. We also noted that the adsorption energy does not dependent much on the thickness of the graphite films. The work function is enhanced slightly by adsorption of methane due to the slight charge transfer from the graphite surface to the methane molecule.
Keywords:  first-principles calculations      graphite      methane molecule      adsorption  
Received:  29 May 2012      Revised:  09 July 2012      Accepted manuscript online: 
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  73.20.At (Surface states, band structure, electron density of states)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 40972196 and 41172263).
Corresponding Authors:  Zhao Jian     E-mail:  zhaojian0209@yahoo.com.cn

Cite this article: 

He Man-Chao (何满潮), Zhao Jian (赵健) Methane adsorption on graphite(0001) films: a first-principles study 2013 Chin. Phys. B 22 016802

[1] Mao J Q 1997 Guizhou Geol. 14 253 (in Chinese)
[2] Fu X H, Qin Y, Ye J P, Tang S H and Zhang Y G 2000 Coal Geol. Explor. 28 19 (in Chinese)
[3] Li S G and Qian M G 2000 Sci. Tech. Rev. 6 39 (in Chinese)
[4] Qin Y, Jiao S H, Tang X Y and Ye J P 2000 J. Chin. Min. Tech. Univ. 29 113 (in Chinese)
[5] Liu X Y, Li X F, Zhang L Y, Fan Z Q and Ma X K 2012 Acta Phys. Sin. 61 146802 (in Chinese)
[6] Xu S Y, Ma X W, Ren X G, Pfiüger T, Dorn A and Ullrich J 2011 Acta Phys. Sin. 60 093401 (in Chinese)
[7] Li H X, Ji L, Wu Y X, Zhou H D, Chen J M, Wang Y J and Liu X H 2012 Chin. Phys. B 21 016101
[8] Li H Y and Liu J S 2010 Acta Phys. Sin. 59 7850 (in Chinese)
[9] Mishra A K and Ramaprabhu S 2012 Chem. Eng. J. 187 10
[10] Yang S Z, Ouyang L Z, Phillips J M and Ching W Y 2006 Phys. Rev. B 73 165407
[11] Chen S J, Jin L Z and Chen X X 2011 Procedia Eng. 26 126
[12] Hassan S and Mahnaz B 2005 Theochem. 726 155
[13] Volpe M and Cleri F 2003 Surf. Sci. 544 24
[14] Yang J Y, Meng S, Xu L F and Wang E G 2004 Phys. Rev. Lett. 92 146102
[15] Sun B, Zhang P, Duan S Q, Zhao X G and Xue Q K 2007 Phys. Rev. B 75 245422
[16] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[17] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[18] Hu M, Zhang J, Wang W D and Qin Y X 2011 Chin. Phys. B 20 082101
[19] Yang Z J, Guo Y D, Linghu R F, Cheng X L and Yang X D 2012 Chin. Phys. B 21 056301
[20] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[21] He M C, Zhao J and Fang Z J 2012 Chin. Phys. B 21 039101
[22] Furthmüller J, Hafner J and Kresse G 1994 Phys. Rev. B 50 15606
[23] Song H, Zhang P and Zhao X G 2007 Acta Phys. Sin. 56 465 (in Chinese)
[24] Knorr K 1992 Phys. Rep. 214 113
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[14] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[15] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
No Suggested Reading articles found!