Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 014101    DOI: 10.1088/1674-1056/22/1/014101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dual-band metamaterial with windmill-like structure

Xiong Han (熊汉), Hong Jing-Song (洪劲松), Jin Da-Lin (金大琳)
Institute of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A broadband negative refractive index metamaterial based on a windmill-like structure is proposed, and investigated numerically and experimentally at the microwave frequency range. From the numerical and experimental results, effect media parameters are retrieved, which clearly show that there exist two broad frequency bands in which the permittivity and permeability are negative. The two negative bands are from 9.1 GHz to 10.5 GHz and from 12.05 GHz to 14.65 GHz respectively, and the negative bandwidth is 4 GHz. Due to the good bandwidth performance, the metallic cell with double negative property obtained in this paper is suitable for use in the design of multiband or broadband microwave devices.
Keywords:  metamaterial      negative refractive index      broadband  
Received:  08 May 2012      Revised:  21 June 2012      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172115 and 60872029), the High-Tech Research and Development Program of China (Grant No. 2008AA01Z206), the Aeronautics Foundation of China (Grant No. 20100180003), and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX 2009J037).
Corresponding Authors:  Xiong Han     E-mail:  xiong1226han@126.com

Cite this article: 

Xiong Han (熊汉), Hong Jing-Song (洪劲松), Jin Da-Lin (金大琳) Dual-band metamaterial with windmill-like structure 2013 Chin. Phys. B 22 014101

[1] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075
[2] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[3] Lu W B and Ji Z F 2011 Chin. Phys. B 20 054101
[4] Chen H, Ran L, Huangfu J, Zhang X, Chen K, Grzegorczyk T M and Kong J A 2004 Phys. Rev. E 70 057605
[5] Chen H, Ran L, Huangfu J, Zhang X, Chen K, Grzegorczyk T M and Kong J A 2005 Appl. Phys. Lett. 86 151909
[6] Wang D, Ran L, Chen H, Mu M, Kong J A and Wu B I 2007 Appl. Phys. Lett. 90 254103
[7] Wang J, Qu S, Xu Z, Zhang J, Ma H, Yang Y and Gu C 2009 Photonics and Nanostructures-Fundamentals and Applications 7 108
[8] Vallecchi A, Capolino F and Schuchinsky A G 2009 IEEE Microw. Wirel. Co. 19 269
[9] He X J, Wang Y, Mei J S, Gui T L and Yin J H 2012 Chin. Phys. B 21 044101
[10] Han N R, Chen Z C, Lim C S, Ng B and Hong M H 2011 Opt. Express 19 6990
[11] Amiri N, Forooraghi K and Atlasbaf Z 2011 IEEE Antennas Wireless Propag. Lett. 10 524
[12] Chowdhury D R, Singh R, Reiten M, Chen H T, Taylor A J, O'Hara J F and Azad A K 2011 Opt. Express 19 15817
[13] Simovski C R and He S 2003 Phys. Rev. A 311 254
[14] Chen X, Grzegorczyk T M, Wu B I, Pacheco Jr J and Kong J A 2004 Phys. Rev. E 70 016608
[15] Houck A A, Brock J B and Chuang I L 2003 Phys. Rev. Lett. 90 137401
[16] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
[17] Wang J, Qu S, Yang Y, Ma H, Wu X and Xu Z 2009 Appl. Phys. Lett. 95 014105
[18] Ran L, Huangfu J, Chen H, Li Y, Zhang X, Chen K and Kong J A 2004 Phys. Rev. B 70 073102
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[6] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[12] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[13] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[14] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[15] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
No Suggested Reading articles found!