Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010502    DOI: 10.1088/1674-1056/22/1/010502
GENERAL Prev   Next  

Feedback control and synchronization of Mandelbrot sets

Zhang Yong-Ping (张永平)
School of Mathematics and Statistics, Shandong University, Weihai 264209, China
Abstract  The movement of the particle could be depicted by Mandelbrot set from the viewpoint of fractal. According to the requirement, the movement of the particle needs to show different behaviors. In this paper, the feedback control method is taken on the classical Mandelbrot set. By amending the feedback item in the controller, the control method is applied to the generalized Mandelbrot set. And by taking the reference item to be the trajectory of another system, the synchronization of Mandelbrot sets is achieved.
Keywords:  Mandelbrot set      feedback control      synchronization  
Received:  29 August 2012      Revised:  26 September 2012      Accepted manuscript online: 
PACS:  05.45.Df (Fractals)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10971120), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2010FM010 and ZR2011FQ035), and the Independent Innovation Foundation of Shandong University, China (Grant No. 2011ZRYQ012).
Corresponding Authors:  Zhang Yong-Ping     E-mail:  ypzhangsd@126.com

Cite this article: 

Zhang Yong-Ping (张永平) Feedback control and synchronization of Mandelbrot sets 2013 Chin. Phys. B 22 010502

[1] Osbaldestin A H 1995 J. Phys. A Math. Gen. 28 5951
[2] Hu B and Lin B 1989 Phys. Rev. A 39 4789
[3] Christian Beck 1999 Physica D 125 171
[4] Wang X Y and Meng Q Y 2004 Acta Phys. Sin. 53 388 (in Chinese)
[5] Liu S T and Zhang Y P 2008 Acta Phys. Sin. 57 737 (in Chinese)
[6] Zhang Y P and Liu S T 2008 Chin. Phys. B 17 543
[7] Zhang Y P, Sun W H and Liu C A 2010 Chin. Phys. B 19 050512
[8] Yuen C H and Wong K W 2012 Chin. Phys. B 21 010502
[9] Wand X Q, Ma J, Zhang X H and Wang X G 2011Chin. Phys. B 20 050510
[10] Duan D H, Xu W, Su J and Zhou B C 2011 Chin. Phys. B 20 030501
[11] Gao T F, Liu F S and Chen J C 2012 Chin. Phys. B 21 020502
[12] Ye Z Y, Yang G and Deng C B 2011Chin. Phys. B 20 010207
[13] Ott E, Grebogi C and Yorke Y A 1990 Phys. Rev. Lett. 64 1196
[14] Michael E Brandt and Chen G 1997 IEEE Trans. Cir. Sys. I 44 1031
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[3] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[6] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[9] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[12] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[13] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[14] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[15] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
No Suggested Reading articles found!