Effects of non-Gaussian noise on a calcium oscillation system
Wang Bing (王兵)a b, Sun Ya-Qin (孙雅琴)b, Tang Xu-Dong (唐旭东)b
a Department of Physics, Yunnan University, Kunming 650091, China; b Department of Physics and Mathematics, Anhui University of Science and Technology, Huainan 232001, China
Abstract We investigate the effects of the non-Gaussian colored noise on a calcium oscillation system using stochastic simulation methods. It is found that the reciprocal coefficient of variance R has a maximum (Rmax) with increasing noise intensity Q. The non-Gaussian noise parameter q has an important effect on the system. For some values of q (e.g., q=0.9, q=1.0), R exists a maximum with increasing correlation time τ. Non-Gaussian noise induced spikes are more regular than Gaussian noise induced spikes when q is small and Q has large values. The R has a maximum with increasing q. Therefore, non-Gaussian noise could play more effective roles in the calcium oscillation system.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.