Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080505    DOI: 10.1088/1674-1056/ac5c31
GENERAL Prev   Next  

Power-law statistics of synchronous transition in inhibitory neuronal networks

Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军)
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
Abstract  We investigate the relationship between the synchronous transition and the power law behavior in spiking networks which are composed of inhibitory neurons and balanced by dc current. In the region of the synchronous transition, the avalanche size and duration distribution obey a power law distribution. We demonstrate the robustness of the power law for event sizes at different parameters and multiple time scales. Importantly, the exponent of the event size and duration distribution can satisfy the critical scaling relation. By changing the network structure parameters in the parameter region of transition, quasicriticality is observed, that is, critical exponents depart away from the criticality while still hold approximately to a dynamical scaling relation. The results suggest that power law statistics can emerge in networks composed of inhibitory neurons when the networks are balanced by external driving signal.
Keywords:  power-law      inhibitory      synchronization      neuronal networks  
Received:  26 November 2021      Revised:  24 February 2022      Accepted manuscript online:  10 March 2022
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.70.Jk (Critical point phenomena)  
  87.85.dq (Neural networks)  
  87.19.lm (Synchronization in the nervous system)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11675096) and the Fund for the Academic Leaders and Academic Backbones, Shaanxi Normal University, China (Grant No. 16QNGG007).
Corresponding Authors:  Sheng-Jun Wang     E-mail:  wangshjun@snnu.edu.cn

Cite this article: 

Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军) Power-law statistics of synchronous transition in inhibitory neuronal networks 2022 Chin. Phys. B 31 080505

[1] Newman M 2005 Contemp. Phys. 46 323
[2] Zeng H L, Zhu C P, Wang S X, Guo Y D, Gu Z M and Hu C K 2005 Physica A 540 123191
[3] Touboul J and Destexhe A 2017 Phys. Rev. E 95 012413
[4] Lin M, Wang G and Chen T L 2006 Commun. Theor. Phys. 46 1011
[5] Pan B C, Shi Q F and Sun G 2013 Chin. Phys. Lett. 30 124701
[6] Dong Y Q, Wang F, Wang S J and Huang Z G 2019 Chin. Phys. B 28 128701
[7] Wang F and Wang S J 2019 Chin. Phys. B 71 746
[8] Gutenberg B and Richter C F 1944 Bull. Seismol. Soc. Am. 34 185
[9] Li B Q, Wu Z X and Wang S J 2019 Chin. Phys. B 28 090503
[10] Sun B A, Wang L F and Shao J H 2017 Acta Phys. Sin. 66 178103 (in Chinese)
[11] Malamud B D, Morein G and Turcotte D L 1998 Science 281 1840
[12] Willis J C and Yule G U 1922 Nature 109 177
[13] de Solla Price D J 1965 Science 149 510
[14] Adamic L and Huberman B A 2000 SSRN Electron. J. 1 1
[15] Wang S J, Hilgetag C C and Zhou C S 2011 Front. Comptut. Neurosci. 5 30
[16] Bédard C, Kröger H and Destexhe A. 2006 Phys. Rev. Lett. 97 118102
[17] Zhang G Q, Yang Q Y and Zhang A Z 2014 Appl. Math. Comput. 242 346
[18] Pan G J, Zhang D M, Yin Y P and He M H 2006 Chin. Phys. Lett. 23 2811
[19] Zhou T and Wang B H 2005 Chin. Phys. Lett. 22 1072
[20] Beggs J M and Plenz D 2003 J. Neurosci. 23 11167
[21] Villegas P, Santo S di, Burioni R and Muñoz M A 2019 Phys. Rev. E 100 012133
[22] Beggs J M and Plenz D 2004 J. Neurosci. 24 5216
[23] Ribeiro T L, Copelli M, Caixeta F, Belchior H, Chialvo D R, Nicolelis M A L and Ribeiro S 2010 PLoS ONE 5 e14129
[24] Palva J M, Zhigalov A, Hirvonen J, Korhonen O, Linkenkaer-Hansen K and Palva S 2013 Proc. Natl. Acad. Sci. USA 110 3585
[25] Shew W L, Clawson W P, Pobst J, Karimipanah Y, Wright N C and Wessel R 2015 Nat. Phys. 11 659
[26] Zhigalov A, Arnulfo G, Nobili L, Palva S and Palva J M 2015 J. Neurosci. 35 5385
[27] Scott G, Fagerholm E D, Mutoh H, Leech R, Sharp D J, Shew W L and Knöpfel T 2014 J. Neurosci. 34 16611
[28] Bellay T, Klaus A, Seshadri S and Plenz D 2015 eLife 4 e07224
[29] Beggs J M and Timme N 2012 Front. Physiol. 3 163
[30] Mitzenmacher M 2004 Internet Math. 1 226
[31] Zapperi S, Lauritsen K B and Stanley H E 1995 Phys. Rev. Lett. 75 4071
[32] Haldeman C and Beggs J M 2005 Phys. Rev. Lett. 94 058101
[33] Plenz D and Thiagarajan T C 2007 Trends Neurosci. 30 101
[34] Alstrom P 1988 Phys. Rev. A 38 4905
[35] Arenas A, Díza-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93
[36] Kurrer C and Schulten K 1995 Phys. Rev. E 51 6213
[37] Bertolotti E, Burioni R, Volo M D and Vezzani A 2017 Phys. Rev. E 95 012308
[38] Qian Y, Gao H Y, Yao C G, Cui X H and Ma J 2018 Chin. Phys. B 27 108902
[39] Feng C F, Xu J X, Wu Z X and Wang Y H 2008 Chin. Phys. B 17 1951
[40] Zhang J Q, Huang S F, Pang S T, Wang M S and Gao S 2015 Chin. Phys. Lett. 32 120502
[41] Varela F, Lachaux J P, Rodriguez E and Martinerie J 2001 Nat. Rev. Neurosci. 2 229
[42] Shusterman V and Troy W C 2008 Phys. Rev. E 77 061911
[43] McAuley J H and Marsden C D 2000 Brain 123 1545
[44] Fontenele A J, Vasconcelos N A P de, Feliciano T, Aguiar L A A, Soares-Cunha C, Coimbra B, Porta L D, Ribeiro S, Rodrigues A J, Sousa N, Carelli P V and Copelli M 2019 Phys. Rev. Lett. 122 208101
[45] Santo S di, Villegas P, Burioni R and Muñoz M A 2018 Proc. Natl. Acad. Sci. USA 115 E1356
[46] Yang H, Shew W L, Roy R and Plenz D 2012 J. Neurosci. 32 1061
[47] Ma Z, Turrigiano G G, Wessel R and Hengen K B 2019 Neuron 104 655
[48] Volo M di and Torcini A 2018 Phys. Rev. Lett. 121 128301
[49] Mejias J F and Longtin A 2012 Phys. Rev. Lett. 108 228102
[50] Priesemann V, Munk M H and Wibral M 2009 BMC Neurosci. 10 40
[51] Carvalho T T A, Fontenele A J, Girardi-Schappo M, Feliciano T, Aguiar L A A, Silva T P L, Vasconcelos N A P de, Carelli P V and Copelli M 2021 BMC Neurosci. 14 83
[52] Kanders K, Lorimer T and Stoop R 2017 Chaos 27 047408
[53] Klaus A, Yu S and Plenz D 2011 PLoS ONE 6 e19779
[54] Raimo D, Sarracino A and Arcangelis L de 2020 Physica A 565 125555
[55] Fosque L J, Williams-García R V, Beggs J M and Ortiz G 2021 Phys. Rev. Lett. 126 098101
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Negative self-feedback induced enhancement and transition of spiking activity for class-3 excitability
Li Li(黎丽), Zhiguo Zhao(赵志国), and Huaguang Gu(古华光). Chin. Phys. B, 2022, 31(7): 070506.
[8] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[9] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[10] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[11] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[12] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[13] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[14] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[15] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
No Suggested Reading articles found!