|
|
Power-law statistics of synchronous transition in inhibitory neuronal networks |
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军)† |
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract We investigate the relationship between the synchronous transition and the power law behavior in spiking networks which are composed of inhibitory neurons and balanced by dc current. In the region of the synchronous transition, the avalanche size and duration distribution obey a power law distribution. We demonstrate the robustness of the power law for event sizes at different parameters and multiple time scales. Importantly, the exponent of the event size and duration distribution can satisfy the critical scaling relation. By changing the network structure parameters in the parameter region of transition, quasicriticality is observed, that is, critical exponents depart away from the criticality while still hold approximately to a dynamical scaling relation. The results suggest that power law statistics can emerge in networks composed of inhibitory neurons when the networks are balanced by external driving signal.
|
Received: 26 November 2021
Revised: 24 February 2022
Accepted manuscript online: 10 March 2022
|
PACS:
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
05.70.Jk
|
(Critical point phenomena)
|
|
87.85.dq
|
(Neural networks)
|
|
87.19.lm
|
(Synchronization in the nervous system)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11675096) and the Fund for the Academic Leaders and Academic Backbones, Shaanxi Normal University, China (Grant No. 16QNGG007). |
Corresponding Authors:
Sheng-Jun Wang
E-mail: wangshjun@snnu.edu.cn
|
Cite this article:
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军) Power-law statistics of synchronous transition in inhibitory neuronal networks 2022 Chin. Phys. B 31 080505
|
[1] Newman M 2005 Contemp. Phys. 46 323 [2] Zeng H L, Zhu C P, Wang S X, Guo Y D, Gu Z M and Hu C K 2005 Physica A 540 123191 [3] Touboul J and Destexhe A 2017 Phys. Rev. E 95 012413 [4] Lin M, Wang G and Chen T L 2006 Commun. Theor. Phys. 46 1011 [5] Pan B C, Shi Q F and Sun G 2013 Chin. Phys. Lett. 30 124701 [6] Dong Y Q, Wang F, Wang S J and Huang Z G 2019 Chin. Phys. B 28 128701 [7] Wang F and Wang S J 2019 Chin. Phys. B 71 746 [8] Gutenberg B and Richter C F 1944 Bull. Seismol. Soc. Am. 34 185 [9] Li B Q, Wu Z X and Wang S J 2019 Chin. Phys. B 28 090503 [10] Sun B A, Wang L F and Shao J H 2017 Acta Phys. Sin. 66 178103 (in Chinese) [11] Malamud B D, Morein G and Turcotte D L 1998 Science 281 1840 [12] Willis J C and Yule G U 1922 Nature 109 177 [13] de Solla Price D J 1965 Science 149 510 [14] Adamic L and Huberman B A 2000 SSRN Electron. J. 1 1 [15] Wang S J, Hilgetag C C and Zhou C S 2011 Front. Comptut. Neurosci. 5 30 [16] Bédard C, Kröger H and Destexhe A. 2006 Phys. Rev. Lett. 97 118102 [17] Zhang G Q, Yang Q Y and Zhang A Z 2014 Appl. Math. Comput. 242 346 [18] Pan G J, Zhang D M, Yin Y P and He M H 2006 Chin. Phys. Lett. 23 2811 [19] Zhou T and Wang B H 2005 Chin. Phys. Lett. 22 1072 [20] Beggs J M and Plenz D 2003 J. Neurosci. 23 11167 [21] Villegas P, Santo S di, Burioni R and Muñoz M A 2019 Phys. Rev. E 100 012133 [22] Beggs J M and Plenz D 2004 J. Neurosci. 24 5216 [23] Ribeiro T L, Copelli M, Caixeta F, Belchior H, Chialvo D R, Nicolelis M A L and Ribeiro S 2010 PLoS ONE 5 e14129 [24] Palva J M, Zhigalov A, Hirvonen J, Korhonen O, Linkenkaer-Hansen K and Palva S 2013 Proc. Natl. Acad. Sci. USA 110 3585 [25] Shew W L, Clawson W P, Pobst J, Karimipanah Y, Wright N C and Wessel R 2015 Nat. Phys. 11 659 [26] Zhigalov A, Arnulfo G, Nobili L, Palva S and Palva J M 2015 J. Neurosci. 35 5385 [27] Scott G, Fagerholm E D, Mutoh H, Leech R, Sharp D J, Shew W L and Knöpfel T 2014 J. Neurosci. 34 16611 [28] Bellay T, Klaus A, Seshadri S and Plenz D 2015 eLife 4 e07224 [29] Beggs J M and Timme N 2012 Front. Physiol. 3 163 [30] Mitzenmacher M 2004 Internet Math. 1 226 [31] Zapperi S, Lauritsen K B and Stanley H E 1995 Phys. Rev. Lett. 75 4071 [32] Haldeman C and Beggs J M 2005 Phys. Rev. Lett. 94 058101 [33] Plenz D and Thiagarajan T C 2007 Trends Neurosci. 30 101 [34] Alstrom P 1988 Phys. Rev. A 38 4905 [35] Arenas A, Díza-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93 [36] Kurrer C and Schulten K 1995 Phys. Rev. E 51 6213 [37] Bertolotti E, Burioni R, Volo M D and Vezzani A 2017 Phys. Rev. E 95 012308 [38] Qian Y, Gao H Y, Yao C G, Cui X H and Ma J 2018 Chin. Phys. B 27 108902 [39] Feng C F, Xu J X, Wu Z X and Wang Y H 2008 Chin. Phys. B 17 1951 [40] Zhang J Q, Huang S F, Pang S T, Wang M S and Gao S 2015 Chin. Phys. Lett. 32 120502 [41] Varela F, Lachaux J P, Rodriguez E and Martinerie J 2001 Nat. Rev. Neurosci. 2 229 [42] Shusterman V and Troy W C 2008 Phys. Rev. E 77 061911 [43] McAuley J H and Marsden C D 2000 Brain 123 1545 [44] Fontenele A J, Vasconcelos N A P de, Feliciano T, Aguiar L A A, Soares-Cunha C, Coimbra B, Porta L D, Ribeiro S, Rodrigues A J, Sousa N, Carelli P V and Copelli M 2019 Phys. Rev. Lett. 122 208101 [45] Santo S di, Villegas P, Burioni R and Muñoz M A 2018 Proc. Natl. Acad. Sci. USA 115 E1356 [46] Yang H, Shew W L, Roy R and Plenz D 2012 J. Neurosci. 32 1061 [47] Ma Z, Turrigiano G G, Wessel R and Hengen K B 2019 Neuron 104 655 [48] Volo M di and Torcini A 2018 Phys. Rev. Lett. 121 128301 [49] Mejias J F and Longtin A 2012 Phys. Rev. Lett. 108 228102 [50] Priesemann V, Munk M H and Wibral M 2009 BMC Neurosci. 10 40 [51] Carvalho T T A, Fontenele A J, Girardi-Schappo M, Feliciano T, Aguiar L A A, Silva T P L, Vasconcelos N A P de, Carelli P V and Copelli M 2021 BMC Neurosci. 14 83 [52] Kanders K, Lorimer T and Stoop R 2017 Chaos 27 047408 [53] Klaus A, Yu S and Plenz D 2011 PLoS ONE 6 e19779 [54] Raimo D, Sarracino A and Arcangelis L de 2020 Physica A 565 125555 [55] Fosque L J, Williams-García R V, Beggs J M and Ortiz G 2021 Phys. Rev. Lett. 126 098101 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|