Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 100201    DOI: 10.1088/1674-1056/ac7209
GENERAL   Next  

Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay

Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿)
Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China
Abstract  Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks (FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag—Leffler synchronization (FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time (SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly, some simulation examples are designed to verify the validity of conclusions.
Keywords:  finite-time Mittag—Leffler synchronization      fractional-order complex-valued memristive neural networks      time delay  
Received:  15 March 2022      Revised:  22 April 2022      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62176189 and 62106181) and the Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) (Grant No. Y202002).
Corresponding Authors:  Zhixia Ding     E-mail:  zxding89@163.com

Cite this article: 

Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿) Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay 2022 Chin. Phys. B 31 100201

[1] Eberhart R and Micheli-Tzanakou E 1990 IEEE Trans. Neural Netw. Learn. Syst. 1 305
[2] Chen W, Ding D, Dong H and Wei G 2019 IEEE Trans. Syst. Man Cybern. 49 1688
[3] Dong T and Huang T W 2019 IEEE Trans. Neural Netw. Learn. Syst. 31 4999
[4] Li C, Belkin D, Li Y, et al. 2018 Nat. Commun. 9 2385
[5] Che H J and Wang J 2018 IEEE Trans. Neural Netw. Learn. Syst. 30 2503
[6] Chen C, Ding Z X, Li S and Wang L H 2020 Chin. Phys. B 29 040202
[7] Ding Z X, Chen C, Wen S P, Li S and Wang L H 2022 Neurocomputing 469 138
[8] Chen J J, Chen B S and Zeng Z G 2018 Neural Netw. 100 10
[9] Zhou B and Song Q K 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 1227
[10] Jankowski S, Lozowski A and Zurada J M 1996 IEEE Trans. Neural Netw. Learn. Syst. 7 1491
[11] Lee D L 2001 IEEE Trans. Neural Netw. 12 1260
[12] Yu J, Hu C, Jiang H J and Wang L M 2020 Neural Netw. 124 50
[13] Wang X H, Wang Z, Song Q K,Shen H and Huang X 2020 Neural Netw. 121 329
[14] Zhang Y L and Deng S F. 2020 Neural Process. Lett. 52 1263
[15] Zhang Z Y, Liu X P, Zhou D H, Lin C, Chen J and Wang H X 2017 IEEE Trans. Syst. Man Cybern. 48 2371
[16] Hirose A 2012 Springer Science & Business Media 131 2
[17] Aizenberg I and Moraga C 2007 Soft Comput.11 169
[18] Aizenberg I 2017 Multiple-Valued Logic and Complex-Valued Neural Networks. In: Seising R and Allende-Cid H (eds) Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing. Studies in Fuzziness and Soft Computing, (Berlin: Springer) vol. 349, pp. 153—171
[19] Cha I and Kassam S A 1995 IEEE J. Sel. Areas Commun. 13 122
[20] Chen S, Hanzo L and Tan S 2018 IEEE Trans. Neural Netw. 19 1659
[21] Ding Z X, Zeng Z G and Wang L M 2017 IEEE Trans. Neural Netw. Learn. Syst. 29 1477
[22] Ding Z X, Zeng Z G, Zhang H, Wang L M and Wang L H 2019 Neurocomputing 351 51
[23] Chen L P, Huang T W, Tenreiro Machado J A, Lopes Antonio M, Chai Y and Wu R C 2019 Neural Netw. 118 289
[24] Zhang F H and Zeng Z G 2020 IEEE Trans. Neural Netw. Learn. Syst. 32 177
[25] Lundstrom Brian N, Higgs Matthew H, Spain William J and Fairhall Adrienne L 2008 Nat. Neurosci. 11 1335
[26] Rakkiyappan R, Cao J D and Velmurugan G 2014 IEEE Trans. Neural Netw. Learn. Syst. 26 84
[27] You X X, Song Q K and Zhao Z J 2020 Neural Netw. 122 382
[28] Rakkiyappan R, Velmurugan G and Cao J D 2015 Chaos, Solitons & Fractals 78 297
[29] Bao H B, Park J H and Cao J D 2016 Neural Netw. 81 16
[30] Li H L, Hu C, Cao J D, Jiang H J and Ahmed A 2019 Neural Netw. 118 102
[31] Yang S, Yu J, Hu C and Jiang H J 2018 Neural Netw. 104 104
[32] Zhang L, Song Q K and Zhao Z J 2017 Appl. Math. Comput. 298 296
[33] Zheng B B, Hu C, Yu J and Jiang H J 2020 Neurocomputing 373 70
[34] Ding Z X, Zhang H, Zeng Z G, Yang L and Li S 2021 IEEE Trans. Neural Netw. Learn. Syst.
[35] Chua L 1971 IEEE Trans. Circuit Syst. I. Reg. Papers 18 507
[36] Yu F, Zhang Z N, Shen H, Huang Y Y, Cai S and Du S C 2022 Chin. Phys. B 31 020505
[37] Yao W, Wang C H, Sun Y C, Zhou C and Lin H R 2020 Neurocomputing 404 367
[38] Gupta I, Serb A, Khiat A, Zeitler R, Vassanelli S and Prodromakis T 2016 Nat. Commun. 7 1
[39] Cai F X, Kumar S, Van Vaerenbergh T, et al. 2020 Nat. Electron. 3 409
[40] Wei H Z, Li R X, Chen C R and Tu Z W 2017 Neural Process. Lett. 45 379
[41] Zhang W W, Zhang H, Cao J D, Alsaadi Fuad E and Chen D Y 2019 Neural Netw. 110 186
[42] Chang W T, Zhu S, Li J Y and Sun K L 2018 Appl. Math. Comput. 338 346
[43] Zhang Y L and Deng S F 2019 Chaos, Solitons & Fractals 128 176
[44] Chen J J, Chen B S and Zeng Z G 2018 IEEE Trans. Syst. Man Cybern. 49 2519
[45] Syed Ali M, Narayanan G, Orman Z, Shekher V and Arik S 2020 Neural Process. Lett. 51 407
[46] Liu G B, Xu S Y, Wei Y L, Qi Z D and Zhang Z Q 2018 Appl. Math. Comput. 320 769
[47] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[48] Wu G C, Deng Z G, Baleanu D and Zeng D Q 2019 Chaos 29 083103
[49] Borisyuk R, Borisyuk G and Kazanovich Y 1998 Behav. Brain Sci. 21 833
[50] Psaltis D, Sideris A and Yamamura A A 1988 IEEE Contr. Syst. Mag. 8 17
[51] Ding D W, Yao X L and Zhang H W 2020 Neural Process. Lett. 51 325
[52] Zhang S, Yang Y, Li L and Wu D H 2021 Neural Process. Lett. 53 865
[53] Mohammadpour S and Binazadeh T 2018 Syst. Sci. Control. Eng. 6 28
[54] Li Y, Chen Y Q and Podlubny I 2009 Automatica 45 1965
[55] Gu Y J, Yu Y G and Wang H 2016 J Franklin Inst. 353 3657
[56] Filippov A F 2013 Differential Equations with Discontinuous Righthand Sides - Control Systems . In: Arscott F M (ed) Mathematics and its Applications (Netherlands: Springer) vol. 18, p. 48
[57] Hu C, Yu J and Jiang H J 2014 Neurocomputing 143 90
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[4] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[5] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[6] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[7] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[8] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[9] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[10] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[11] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[12] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[13] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
[14] Attosecond transient absorption spectroscopy: Comparative study based on three-level modeling
Zeng-Qiang Yang(杨增强), Di-Fa Ye(叶地发), Li-Bin Fu(傅立斌). Chin. Phys. B, 2018, 27(1): 013301.
[15] Effects of time delays in a mathematical bone model
Li-Fang Wang(王莉芳), Kang Qiu(仇康), Ya Jia(贾亚). Chin. Phys. B, 2017, 26(3): 030503.
No Suggested Reading articles found!