Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020504    DOI: 10.1088/1674-1056/ac3cb0
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
TOPICAL REVIEW—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Explosive synchronization: From synthetic to real-world networks

Atiyeh Bayani1, Sajad Jafari1,2,†, and Hamed Azarnoush1
1 Department of Biomedical Engineering, Amirkabir University of Technology, No. 350, Hafez Ave., Valiasr Square, Tehran 159163-4311, Iran;
2 Health Technology Research Institute, Amirkabir University of Technology, No. 350, Hafez Ave., Valiasr Square, Tehran 159163-4311, Iran
Abstract  Synchronization is a widespread phenomenon in both synthetic and real-world networks. This collective behavior of simple and complex systems has been attracting much research during the last decades. Two different routes to synchrony are defined in networks; first-order, characterized as explosive, and second-order, characterized as continuous transition. Although pioneer researches explained that the transition type is a generic feature in the networks, recent studies proposed some frameworks in which different phase and even chaotic oscillators exhibit explosive synchronization. The relationship between the structural properties of the network and the dynamical features of the oscillators is mainly proclaimed because some of these frameworks show abrupt transitions. Despite different theoretical analyses about the appearance of the first-order transition, studies are limited to the mean-field theory, which cannot be generalized to all networks. There are different real-world and man-made networks whose properties can be characterized in terms of explosive synchronization, e.g., the transition from unconsciousness to wakefulness in the brain and spontaneous synchronization of power-grid networks. In this review article, explosive synchronization is discussed from two main aspects. First, pioneer articles are categorized from the dynamical-structural framework point of view. Then, articles that considered different oscillators in the explosive synchronization frameworks are studied. In this article, the main focus is on the explosive synchronization in networks with chaotic and neuronal oscillators. Also, efforts have been made to consider the recent articles which proposed new frameworks of explosive synchronization.
Keywords:  synchronization      explosive synchronization      Kuramoto oscillator      chaotic systems      neuronal networks      complex network  
Received:  15 July 2021      Revised:  21 November 2021      Accepted manuscript online:  29 November 2021
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.-a (Nonlinear dynamics and chaos)  
  87.19.lj (Neuronal network dynamics)  
  89.75.-k (Complex systems)  
Corresponding Authors:  Sajad Jafari     E-mail:  sajadjafari@aut.ac.ir

Cite this article: 

Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush Explosive synchronization: From synthetic to real-world networks 2022 Chin. Phys. B 31 020504

[1] Pikovsky A, Rosenblum M and Kurths J 2019 Acta Phys. Sin. 68 180503 (in Chinese)
[2] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 44 401
[3] Rosenblum M and Pikovsky A 2003 Contemporary Physics 44 401
[4] Wu N P, Cheng H Y, Dai Q L and Li H H 2016 Chin. Phys. Lett. 33 070501
[5] He Z, Wang X, Zhang G Y and Zhan M 2014 Phys. Rev. E 90 012909
[6] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[7] Hoppensteadt F C and Izhikevich E M 2000 Phys. Rev. E 62 4010
[8] Qin Y, et al. 2020 IEEE Trans. Biomed. Eng. 67 3363
[9] Li C, Chen L and Aihara K 2007 BMC Systems Biology 1 1
[10] Murthy V N and Fetz E E 1996 Journal of Neurophysiology 76 3968
[11] Vilfan A and Duke T 2003 Phys. Rev. Lett. 91 114101
[12] Toiya M, González-Ochoa H O, Vanag V K, Fraden S and Epstein I R 2010 J. Phys. Chem. Lett. 1 1241
[13] Taylor A F, Tinsley M R, Wang F, Huang Z and Showalter K 2009 Science 323 614
[14] Blasius B and Stone L 2000 Int. J. Bifur. Chaos 10 2361
[15] Goldwyn E E and Hastings A 2009 Bull. Math. Biol. 71 130
[16] Shu R, Chen W and Xiao J H 2019 Acta Phys. Sin. 68 180503 (in Chinese)
[17] Zhang J Q, Huang S F, Pang S T, Wang M S and Gao S 2015 Chin. Phys. Lett. 32 120502
[18] Chen C, Ding Z X, Li S and Wang L H 2020 Chin. Phys. B 29 040202
[19] Hu D, Sun X, Li P, Chen Y and Zhang J 2015 Chin. Phys. Lett. 32 128901
[20] Li J H 2016 Chin. Phys. Lett. 33 120501
[21] Liu Y L, Yu X M and Hao Y H 2015 Chin. Phys. Lett. 32 110503
[22] Kuramoto Y 1975 International Symposium on Mathematical Problems in Theoretical Physics (Springer) pp. 420-422
[23] Pikovsky A S, Rosenblum M G, Osipov G V and Kurths J 1997 Physica D:Nonlinear Phenomena 104 219
[24] Parastesh F, Jafari S, Azarnoush H, Shahriari Z, Wang Z, Boccaletti S and Perc M 2020 Phys. Rep. 898 pp. 1-114
[25] Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (Springer) pp. 111-140
[26] Rodrigues F A, Peron T K D, Ji P and Kurths J 2016 Phys. Rep. 610 1
[27] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[28] Boccaletti S, Kurths J, Osipov G, Valladares D and Zhou C 2002 Phys. Rep. 366 1
[29] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1804
[30] Hramov A E and Koronovskii A A 2005 Physica D:Nonlinear Phenomena 206 252
[31] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193
[32] Abarbanel H D, Rulkov N F and Sushchik M M 1996 Phys. Rev. E 53 4528
[33] Lai Q, Norouzi B and Liu F 2018 Chaos, Solitons and Fractals 114 230
[34] Yan S L 2019 Acta Phys. Sin. 68 170502 (in Chinese)
[35] Yan H B, Gao H, Yang G W, Hao H B, Niu Y and Liu P 2020 Chin. Phys. B 29 020504
[36] Guo D D and Lu Z S 2019 Chin. Phys. B 28 110501
[37] Lai Q 2021 Int. J. Bifur. Chaos 31 2150013
[38] Lai Q, Wan Z, Kengne L K, Kuate P D K and Chen C 2020 IEEE Tran. Circ. Syst. II:Express Briefs 68 2197
[39] Lai Q, Wan Z and Kuate P D K 2020 Electron. Lett. 56 1044
[40] Parastesh F, Jafari S and Azarnoush H 2019 Eur. Phys. J. Special Topics 228 2123
[41] Gémez-Gardenes J, Gómez S, Arenas A and Moreno Y 2011 Phys. Rev. Lett. 106 128701
[42] D'Souza R M, Gómez-Gardeñes J, Nagler J and Arenas A 2019 Adv. Phys. 68 123
[43] Boccaletti S, et al. 2016 Phys. Rep. 660 1
[44] Erdös P and Rényi A 1964 Acta Mathematica Academiae Scientiarum Hungarica 12 261
[45] Barabási A L and Albert R 1999 Science 286 509
[46] Watts D J and Strogatz S H 1998 Nature 393 440
[47] Pazó D 2005 Phys. Rev. E 72 046211
[48] Basnarkov L and Urumov V 2007 Phys. Rev. E 76 057201
[49] Basnarkov L and Urumov V 2008 Phys. Rev. E 78 011113
[50] Bonilla L L, Neu J C and Spigler R 1992 J. Statistical Physics 67 313
[51] Crawford J D 1994 J. Statistical Physics 74 1047
[52] Achlioptas D, D'Souza R M and Spencer J 2009 Science 323 1453
[53] Radicchi F and Fortunato S 2009 Phys. Rev. Lett. 103 168701
[54] Gómez-Gardeñes J and Moreno Y 2006 Phys. Rev. E 73 056124
[55] Zou Y, Pereira T, Small M, Liu Z and Kurths J 2014 Phys. Rev. Lett. 112 114102
[56] Vlasov V, Zou Y and Pereira T 2015 Phys. Rev. E 92 012904
[57] Xu C, Gao J, Sun Y, Huang X and Zheng Z 2015 Sci. Rep. 5 12039
[58] Liu W, Wu Y, Xiao J and Zhan M 2013 Europhys. Lett. 101 38002
[59] Newman M E 2002 Phys. Rev. Lett. 89 208701
[60] Sendiña-Nadal I, et al. 2015 Phys. Rev. E 91 032811
[61] Skardal P S and Arenas A 2014 Phys. Rev. E 89 062811
[62] Cao L, Tian C, Wang Z, Zhang X and Liu Z 2018 Phys. Rev. E 97 022220
[63] Leyva I, et al. 2013 Sci. Rep. 3 1281
[64] Papoulis A and Saunders H 1989 Probability, Random Variables and Stochastic Processes? 2nd edn. ASME J. Vib., Acoust., Stress, and Reliab. 111 123
[65] Leyva I, Sendina-Nadal I, Almendral J, Navas A, Olmi S and Boccaletti S 2013 Phys. Rev. E 88 042808
[66] Zhu L H 2016 Chin. Phys. Lett. 33 050501
[67] Pan T, Huang X, Xu C and Lü H 2019 Chin. Phys. B 28 120503
[68] Zhang X, Hu X, Kurths J and Liu Z 2013 Phys. Rev. E 88 010802
[69] Barbara P, Cawthorne A, Shitov S and Lobb C 1999 Phys. Rev. Lett. 82 1963
[70] Bruesselbach H, Jones D C, Mangir M S, Minden M and Rogers J L 2005 Opt. Lett. 30 1339
[71] Strogatz S H, Abrams D M, McRobie A, Eckhardt B and Ott E 2005 Nature 438 43
[72] Filatrella G, Pedersen N F and Wiesenfeld K 2007 Phys. Rev. E 75 017201
[73] Zhang X, Boccaletti S, Guan S and Liu Z 2015 Phys. Rev. Lett. 114 038701
[74] Dai X, et al. 2020 Chaos, Solitons and Fractals 132 109589
[75] Singla T and Rivera M 2020 Chaos:An Interdisciplinary Journal of Nonlinear Science 30 113135 Singla T and Rivera M 2020 arXiv preprint arXiv:2007.09801
[76] Boccaletti S, et al. 2014 Phys. Rep. 544 1
[77] Aleta A and Moreno Y 2019 Ann Rev. Condens. Matter Phys. 10 45
[78] Kivelä M, Arenas A, Barthelemy M, Gleeson J P, Moreno Y and Porter M A 2014 J. Complex Networks 2 203
[79] Taylor D, Shai S, Stanley N and Mucha P J 2016 Phys. Rev. Lett. 116 228301
[80] Majhi S, Perc M and Ghosh D 2016 Sci. Rep. 6 39033
[81] Shafiei M, Jafari S, Parastesh F, Ozer M, Kapitaniak T and Perc M 2020 Commun. Nonlinear Sci. Num. Simul. 84 105175
[82] Vaiana M and Muldoon S F 2018 J. Nonlinear Sci. 30 2147
[83] Reimann M W, et al. 2017 Frontiers in Computational Neuroscience 11 48
[84] Kartun-Giles A P and Bianconi G 2019 Chaos, Solitons and Fractals:X 1 100004
[85] Battiston F, Cencetti G, Iacopini I, et al. 2020 Phys. Rep. 874 pp. 1-92
[86] Wang D, Zhao Y, Leng H and Small M 2020 Phys. Lett. A 384 126895
[87] Andjelković M, Tadić B and Melnik R 2020 Sci. Rep. 10 1
[88] Sakaguchi H and Kuramoto Y 1986 Prog. Theor. Phys. 76 576
[89] Bick C, Ashwin P and Rodrigues A 2016 Chaos:An Interdisciplinary J. of Nonlinear Science 26 094814
[90] Matamalas J T, Gómez S and Arenas A 2020 Phys. Rev. Research 2 012049
[91] Skardal P S and Arenas A 2020 Commun. Phys. 3 1
[92] Millán A P, Torres J J and Bianconi G 2020 Phys. Rev. Lett. 124 218301
[93] Kuehn C and Bick C 2021 Sci. Adv. 7 16
[94] Daido H 1996 Physica D:Nonlinear Phenomena 91 24
[95] Huang X, Gao J, Sun Y T, Zheng Z G and Xu C 2016 Frontiers of Physics 11 6
[96] Chen H B, Sun Y T, Gao J, Xu C and Zheng Z G 2017 Frontiers of Physics 12 120504
[97] Kundu P, Khanra P, Hens C and Pal P 2017 Phys. Rev. E 96 052216
[98] Kundu P and Pal P 2019 Chaos:An Interdisciplinary J. Nonlinear Science 29 013123
[99] Zhu L 2020 J. Appl. Math. Phys. 8 259
[100] Khanra P, Kundu P, Pal P, Ji P and Hens C 2020 Chaos:An Interdisciplinary J. Nonlinear Science 30 031101
[101] Xiao Y, Jia W, Xu C, Lü H and Zheng Z 2017 Europhys. Lett. 118 60005
[102] Khanra P, Kundu P, Hens C and Pal P 2018 Phys. Rev. E 98 052315
[103] Kumar A and Jalan S 2021 Chaos:An Interdisciplinary Journal of Nonlinear Science 31 041103
[104] Ansariara M, Emadi S, Adami V, Botha A and Kolahchi M 2020 Nonlinear Dynamics 100 3685
[105] Yuan D, Zhao D Q, Xiao Y and Zhang Y X 2016 Chin. Phys. Lett. 33 050502
[106] Tanaka H A, Lichtenberg A J and Oishi S I 1997 Physica D:Nonlinear Phenomena 100 279
[107] Hu B and Zhou C 2000 Phys. Rev. E 61 R1001
[108] Chen H, He G, Huang F, Shen C and Hou Z 2013 Chaos:An Interdisciplinary J. Nonlinear Science 23 033124
[109] Khoshkhou M and Montakhab A 2018 Frontiers in Computational Neuroscience 12 59
[110] Leyva I, et al. 2012 Phys. Rev. Lett. 108 168702
[111] Khoshkhou M and Montakhab A 2020 Physica D:Nonlinear Phenomena 405 132399
[112] Jun-Chan Z 2013 Chin. Phys. B 22 060506
[113] Izhikevich E M 2003 IEEE Trans. Neural Networks 14 1569
[114] Girardi-Schappo M, Tragtenberg M and Kinouchi O 2013 J. Neuroscience Methods 220 116
[115] Bellman R 1966 Science 153 34
[116] Zandi-Mehran N, Panahi S, et al. 2020 Chaos, Solitons and Fractals 132 109558
[117] Courbage M and Nekorkin V I 2010 Int. J. Bifur. Chaos 20 1631
[118] Rulkov N F 2002 Phys. Rev. E 65 041922
[119] Chialvo D R 1995 Chaos, Solitons and Fractals 5 461
[120] Boaretto B, Budzinski R, Prado T and Lopes S 2019 Phys. Rev. E 100 052301
[121] Newman M E, Walls D, Newman M, Barabási A L and Watts D J 2011 The Structure and Dynamics of Networks (Princeton:Princeton University Press) pp. 310-320
[122] Gilroy A M and MacPherson B R (Eds.) 2016 Atlas of Anatomy, 3rd edn. (New York:Thieme Medical Publishers, Inc.) p. 760
[123] Wang C Q, Pumir A, Garnier N B and Liu Z H 2017 Frontiers of Physics 12 128901
[124] Kim M, et al. 2016 Frontiers in Computational Neuroscience 10 1
[125] Kim M, Kim S, Mashour G A and Lee U 2017 Frontiers in Computational Neuroscience 11 55
[126] Zhu L, Tian L and Shi D 2013 Phys. Rev. E 88 042921
[127] Yaffe R B, et al. 2015 Clinical Neurophysiology 126 227
[128] Clauw D J 2014 JAMA 311 1547
[129] Häuser W, et al. 2015 Nature Reviews Disease Primers 1 1
[130] Sörensen J, Graven-Nielsen T, Henriksson K, Bengtsson M and Arendt-Nielsen L 1998 J. Rheumatology 25 152
[131] Clauw D J 2009 The American Journal of Medicine 122 S3-S13
[132] Lee U, Kim M, Lee K, et al. 2018 Sci. Rep. 8 pp. 1-11
[133] Van Den Heuvel M P and Sporns O 2011 J. Neuroscience 31 15775
[134] Wang D 1999 Wiley Encyclopedia of Electrical and Electronics Engineering 18 396
[135] Varigonda S and Georgiou T T 2001 IEEE Trans. Automatic Control 46 65
[136] Pippard A B 2007 The Physics of Vibration (Cambridge:Cambridge University Press)
[137] Epstein I R and Xu B 2016 Nature Nanotechnology 11 312
[138] Grudziński K and Źebrowski J J 2004 Physica A:Statistical Mechanics and its Applications 336 153
[139] Grasman J and Jansen M J W 1979 J. Math. Biol. 7 171
[140] Cǎlugǎru D, Totz J F, Martens E A and Engel H 2020 Sci. Adv. 6 eabb2637
[141] Pisarchik A, Jaimes-Reátegui R, et al. 2006 Phys. Rev. Lett. 96 244102
[142] Zhao N, Sun Z, Yang X and Xu W 2018 Phys. Rev. E 97 062203
[143] Bi H, Hu X, Zhang X, Zou Y, Liu Z and Guan S 2014 Europhys. Lett. 108 50003
[144] Saxena G, Prasad A and Ramaswamy R 2012 Phys. Rep. 521 205
[145] Koseska A, Volkov E and Kurths J 2013 Phys. Rev. Lett. 111 024103
[146] Koseska A, Volkov E and Kurths J 2013 Phys. Rep. 531 173
[147] Verma U K, Sharma A, Kamal N K, Kurths J and Shrimali M D 2017 Sci. Rep. 7 1
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[6] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[7] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[8] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[9] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[10] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[11] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[12] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[13] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[14] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[15] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
No Suggested Reading articles found!