CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Synchronization of nanowire-based spin Hall nano-oscillators |
Biao Jiang(姜彪)1, Wen-Jun Zhang(张文君)2, Mehran Khan Alam1, Shu-Yun Yu(于淑云)1, Guang-Bing Han(韩广兵)1, Guo-Lei Liu(刘国磊)1, Shi-Shen Yan(颜世申)1, and Shi-Shou Kang(康仕寿)1,† |
1 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; 2 Department of Physics and Electronic Science, Weifang University, Weifang 261061, China |
|
|
Abstract The synchronization of the spin Hall nano-oscillator (SHNO) device driven by the pure spin current has been investigated with micromagnetic simulations. It was found that the power spectra of nanowire-based SHNO devices can be synchronized by varying the current flowing in the heavy metal (HM) layer. The synchronized signals have relatively high power and narrow linewidth, favoring the potential applications. We also found that the synchronized spectra are strongly dependent on both the number and length of nanowires. Moreover, a periodic modulation of power spectra can be obtained by introducing interfacial Dzyaloshinskii-Moriya interaction (iDMI). Our findings could enrich the current understanding of spin dynamics driven by the pure spin current. Further, it could help to design novel spintronic devices.
|
Received: 21 December 2021
Revised: 11 February 2022
Accepted manuscript online: 17 February 2022
|
PACS:
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
75.30.Ds
|
(Spin waves)
|
|
07.55.-w
|
(Magnetic instruments and components)
|
|
Fund: Project supported by the National Basic Research Program of Natural Science Foundation of China (Grant Nos. 12074220, and 11627805) and the 111 Project (Grant No. B13029). |
Corresponding Authors:
Shi-Shou Kang
E-mail: skang@sdu.edu.cn
|
Cite this article:
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿) Synchronization of nanowire-based spin Hall nano-oscillators 2022 Chin. Phys. B 31 077503
|
[1] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1 [2] Berger L 1996 Phys. Rev. B 54 9353 [3] Ralph D C and Stiles M D 2008 J. Magn. Magn. Mater. 320 1190 [4] Kimura T, Sato T and Otani Y 2008 Phys. Rev. Lett 100 066602 [5] Hamrle J, Kimura T, Otani Y, Tsukagoshi K and Aoyagi Y 2005 Phys. Rev. B 71 [6] Fulara H, Zahedinejad M, Khymyn R, Awad A A, Muralidhar S, Dvornik M and Åkerman J 2019 Sci. Adv. 5 8467 [7] Csaba G and Porod W 2013 IEEE Trans. Magnet. 49 4447 [8] Yogendra K, Fan D, Jung B and Roy K 2016 IEEE Trans. Electron Dev. 63 1674 [9] Demidov VE, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov SO 2012 Nat. Mater. 11 1028 [10] Chen T, Dumas R K, Eklund A, Muduli P K and Åkerman J 2016 IEEE 104 1919 [11] Cheng R, Xiao D and Brataas A 2016 Phys. Rev. Lett 116 207603 [12] Demidov V E, Urazhdin S, Zholud A, Sadovnikov A V and Demokritov S O 2014 Appl. Phys. Lett. 105 172410 [13] Giordano A, Carpentieri M, Laudani A, Gubbiotti G, Azzerboni B and Finocchio G 2014 Appl. Phys. Lett. 105 042412 [14] Sharma A, Tulapurkar A A and Muralidharan B 2017 Phys. Rev. Appl. 8 064014 [15] Li L Y, Chen L N, Liu R H and Du Y W 2020 Chin. Phys. B 29 117102 [16] Chen L N, Urazhdin S, Du Y W and Liu R H 2019 Phys. Rev. Appl. 11 064038 [17] Awad A A, Dürrenfeld P, Houshang A, Dvornik M, Iacocca E, Dumas R K and Åkerman J 2016 Nat. Phys. 13 292 [18] Hache T, Li Y, Weinhold T, Scheumann B, Gonçalves F J T, Hellwig O, Fassbender J and Schultheiss H 2020 Appl. Phys. Lett. 116 [19] Durrenfeld P, Awad A A, Houshang A, Dumas R K and Åkerman J 2017 Nanoscale 9 1285 [20] Zahedinejad M, Mazraati H, Fulara H, Yue J, Jiang S, Awad A A and Åkerman J 2018 Appl. Phys. Lett. 112 132404 [21] Sumito T, Tomohiro T, Romain L, Kay Y, Vincent C, Julie G, Akio F, Shinji Y and Hitoshi K 2018 Sci. Rep. 8 13475 [22] Zahedinejad M, Awad A.A, Muralidhar S, Khymyn R, Fulara H, Mazraati H, Dvornik M and Åkerman J 2020 Nat. Nanotechnol. 15 47 [23] Hamid M, Shreyas M, Seyyed R E, Mohammad Z, Seyed A B, Sunjae C, Ahmad A A, Mykola D and Johan Å 2018 arxiv:1812.06350v1[hep-ph] [24] Mancoff F B, Rizzo N D, Engel B N and Tehrani S 2005 Nature 437 393 [25] Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E and Katine J A 2005 Nature 437 389 [26] Kenneth and Fink S 2000 Phys. Rev. E 61 5080 [27] Elyasi M, Bhatia C S and Yang H 2015 J. Appl. Phys. 117 [28] Kendziorczyk T and Kuhn T 2016 Phys. Rev. B 93 [29] Li Q Y, Zhao D and Li Z D 2021 Chin. Phys. B 30 017504 [30] Fu Q W, Li Y, Chen L N, Ma F S, Li H T, Xu Y B, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 087503 [31] Kang Y B, Lin F Y, Li K X, Tang J L, Hou X B, Wang D K, Fang X, Fang D, Wang X W and Wei Z P 2021 Chin. Phys. B 30 078102 [32] Duan Z, Smith A, Yang L, Youngblood B, Lindner J, Demidov V E, Demokritov S O and Krivorotov I N 2014 Nat. Commun. 5 5616 [33] Yang L, Verba R, Tiberkevich V, Schneider T, Smith A, Duan Z, Youngblood B, Lenz K, Lindner J, Slavin A N and Krivorotov I N 2015 Sci. Rep. 5 16942 [34] Chen J R, Smith A, Montoya E A, Lu J G and Krivorotov I N 2020 Commun. Phys. 3 [35] Slavin A and Tiberkevich V 2009 IEEE Trans. Magn. 45 1875 [36] Slavin A and Tiberkevich V 2005 Phys. Rev. Lett. 95 237201 [37] Consolo G, Lopez-Diaz L, Torres L and Azzerboni B 2007 Phys. Rev. B 75 214428 [38] Arne V, Jonathan L, Mykola D, Mathias H, Felipe G S and Bartel V W 2014 AIP Adv. 4 107133 [39] Bayer C, Jorzick J, Hillebrands B, Demokritov S O, Kouba R, Bozinoski R, Slavin A N, Guslienko K Y, Berkov D V, Gorn N L and Kostylev M P 2005 Phys. Rev. B 72 [40] Park J P, Eames P, Engebretson D M, Berezovsky J and Crowell P A 2002 Phys. Rev. Lett. 89 277201 [41] Awad A A, Houshang A, Zahedinejad M, Khymyn R and Kerman J 2020 Appl. Phys. Lett. 116 232401 [42] Duan Z, Krivorotov I N, Arias R E, Reckers N, Stienen S and Lindner Jürgen 2015 Phys. Rev. B 92 104424 [43] Sankey J C, Krivorotov I N, Kiselev S I, Braganca P M, Emley N C, Buhrman R A and Ralph D C 2005 Phys. Rev. B 72 224427 [44] Boone C, Katine J A, Childress J R, Zhu J, Cheng X and Krivorotov I N 2009 Phys. Rev. B 79 140404 [45] Krivorotov I N, Emley N C, Buhrman R A and Ralph D C 2008 Phys. Rev. B 77 054440 [46] Iacocca E, Heinonen O, Muduli P K and Åkerman J 2014 Phys. Rev. B 89 054402 [47] Šimánek E and Heinrich B 2003 Phys. Rev. B 67 [48] Kendziorczyk T and Kuhn T 2016 Phys. Rev. B 93 134413 [49] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422 [50] Gayles J, Freimuth F, Schena T, Lani G, Mavropoulos P, Duine R A, Blügel S and Sinova J Y 2015 Phys. Rev. Lett. 115 036602 [51] Yang J, Li J, Lin L Z and Zhu J J 2020 Chin. Phys. Lett. 37 087501 [52] Frank F, Robert B, Yuriy M and Achim R 2013 Phys. Rev. B 88 214409 [53] Yang H X, Olivier B, Vincent C, Albert F and Mairbek C 2018 Sci. Rep. 8 12356 [54] Yang L, Philipp D, Ruan X Z, Liu W Q, He L, Xu Y B and Zhou Y 2017 IEEE Magn. Lett. 8 1 [55] Zhang W J, Zhong H R. Zang R X, Zhang Y, Yu S S, Han G B, Liu G L, Yan S S, Kang S S and Li M 2018 Appl. Phys. Lett. 113 122406 [56] Suwardy J, Nawaoka K, Cho, J, Goto M, Suzuki Y and Miwa S 2018 Phys. Rev. B 98 144432 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|