Abstract The finite-time synchronization of fractional-order multi-weighted complex networks (FMCNs) with uncertain parameters and external disturbances is studied. Firstly, based on fractional calculus characteristics and Lyapunov stability theory, quantized controllers are designed to guarantee that FMCNs can achieve synchronization in a limited time with and without coupling delay, respectively. Then, appropriate parameter update laws are obtained to identify the uncertain parameters in FMCNs. Finally, numerical simulation examples are given to validate the correctness of the theoretical results.
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为) Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control 2022 Chin. Phys. B 31 100504
[1] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang H U 2006 Phys. Rep.424 175 [2] Rosvall M and Bergstrom C T 2008 Proc. Natl. Acad. Sci. USA105 4 [3] Wang L and Wang P 2015 Int. J. Modern Phys. C26 1550052 [4] Johnsen T E, Mikkelsen O S and Wong C Y 2019 Supp. Chain Manag.24 872 [5] Zhai S and Yang X S 2014 IET Control Theory Appl.8 61 [6] Zhang C and Shi L 2019 J. Franklin Instit.356 4106 [7] Zhang C and Chen T 2018 Physica A496 602 [8] Zhang C and Han B S 2020 Physica A538 122827 [9] Xu Y, Li Y Z and Li W X 2020 Commun. Nonlinear Sci. Numer. Simulat.85 105239 [10] Yao X, Xia D and Zhang C M 2021 Math. Methods Appl. Sci.44 1570 [11] Ding D W, Yan J, Wang N and Liang D 2017 Chaos, Solitons and Fractals104 41 [12] Hu C, He H B and Jiang H J 2020 Automatica112 108675 [13] Zhang C, Wang X Y, Ye X, Zhou S and Feng L 2020 ISA Transact.101 42 [14] Jin Y G, Zhong S M and An N 2014 Chin. Phys. B24 049202 [15] Wang Q, Wang J L, Huang Y L and Ren S Y 2018 J. Franklin Instit.355 6597 [16] Zhao L H, Wang J L and Zhang Y 2020 J. Franklin Instit.357 414 [17] Yang Q J, Wu H Q and Cao J D 2021 Neurocomput.428 182 [18] Liu L, Ding X W and Zhou W N 2021 Neurocomputing 419 136 [19] Shi L, Zhu H and Zhong S M 2017 Nonlinear Dyn.88 859 [20] Chu X Y, Xu L G and Hu H X 2020 Chaos, Solitons and Fractals140 110268 [21] Chen X Y, Huang T W, Cao J D, Park J H and Qiu J H 2019 IET Control Theory Appl.13 1246 [22] Chen X, Yang X S, Lu J Q, Feng J W, Alsaadi F E and Hayat T 2018 IEEE Transact. Cybernet.48 3021 [23] Guo Y, Chen B D and Wu Y B 2020 J. Franklin Instit.357 359 [24] He S H, Wu Y Q and Li Y Z 2020 J. Franklin Instit.357 11645 [25] Zhang W L, Li C D, He X and Li H F 2018 Modern Phys. Lett. B32 1850002 [26] Huang D B 2004 Phys. Rev. E69 067201 [27] Mei J, Jiang M H and Wang J 2013 Commun. Nonlinear Sci. Numer. Simulat.18 999 [28] Liu L F and Miao S X 2018 Physica A512 890 [29] Zhao H, Li L, Xiao J, Yang Y and Zheng M 2017 Chaos, Solitons and Fractals104 268 [30] Kilbas A, Srivastava H and Trujillo J 2006 Theory and Application of Fractional Differential Equations (New York: Elsevier) p. 80 [31] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic) p. 141 [32] Kaslik E and Sivasundaram S 2012 Neural Networks32 245 [33] Jia J, Huang X, Li Y, Cao J D and Alsaedi A 2020 IEEE Transact. Neural Networks Learning Sys.31 997 [34] Alkahtani B S T 2016 Chaos, Solitons and Fractals89 547 [35] Petras I 2010 IEEE Transact. Circuits Systems II: Exp. Briefs57 975 [36] Li H L, Cao J D, Jiang H J and Alsaedi A 2018 J. Franklin Instit. 355 5771 [37] Li H L, Cao J D, Jiang H J and Alsaedi A 2019 Physica A533 122027 [38] Lu J Y, Guo Y P, Ji Y D and Fan S S 2020 Chaos, Solitons and Fractals130 109433 [39] Wang J A, Nie R X and Sun Z Y 2014 Chin. Phys. B23 050509 [40] Gan L Y N, Wu Z Y and Gong X L 2015 Chin. Phys. B24 040503 [41] Dong H L, Luo M and Xiao M Q 2021 Neural Networks141 40 [42] Niu Y G and Daniel W C H 2014 Automatica50 2665 [43] Fu M Y and Xie L H 2005 IEEE Transact. Automatic Control50 1698 [44] He J J, Chen H, Ge M F, Ding T F, Wang L M and Liang C D 2021 Neurocomput.431 90 [45] Bao H B, Park J H and Cao J D 2021 IEEE Transact. Neural Networks Learning Sys.32 3230 [46] Fan Y J, Huang X, Wang Z, Xia J W and Shen H 2020 Neural Proc. Lett.52 403 [47] Camacho N A, Mermoud M A D and Gallegos J A 2014 Commun. Nonlinear Sci. Numer. Simulat.19 2951 [48] Ding D W, Yao X L and Zhang H W 2019 Neural Proc. Lett.51 325 [49] Qian C J and Li J 2021 IEEE Transact. Automatic Control50 885 [50] Filippov A F 1988 1988 Differential equations with discontinuous right hand sides (Norwell: Kluwer Academic Publishers) pp. 377—390
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.