Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080507    DOI: 10.1088/1674-1056/ac490c
GENERAL Prev   Next  

Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system

Yi-Xuan Shan(单仪萱)1,2, Hui-Lan Yang(杨惠兰)1,2, Hong-Bin Wang(王宏斌)1,2,†, Shuai Zhang(张帅)1,2, Ying Li(李颖)1,2, and Gui-Zhi Xu(徐桂芝)1,2
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China;
2 Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract  Astrocytes have a regulatory function on the central nervous system (CNS), especially in the temperature-sensitive hippocampal region. In order to explore the thermosensitive dynamic mechanism of astrocytes in the CNS, we establish a neuron-astrocyte minimum system to analyze the synchronization change characteristics based on the Hodgkin-Huxley model, in which a pyramidal cell and an interneuron are connected by an astrocyte. The temperature range is set as 0 ℃-40 ℃ to juggle between theoretical calculation and the reality of a brain environment. It is shown that the synchronization of thermosensitive neurons exhibits nonlinear behavior with changes in astrocyte parameters. At a temperature range of 0 ℃-18 ℃, the effects of the astrocyte can provide a tremendous influence on neurons in synchronization. We find the existence of a value for inositol triphosphate (IP3) production rate and feedback intensities of astrocytes to neurons, which can ensure the weak synchronization of two neurons. In addition, it is revealed that the regulation of astrocytes to pyramidal cells is more sensitive than that to interneurons. Finally, it is shown that the synchronization and phase transition of neurons depend on the change in Ca2+ concentration at the temperature of weak synchronization. The results in this paper provide some enlightenment on the mechanism of cognitive dysfunction and neurological disorders with astrocytes.
Keywords:  astrocytes      synchronization      Hodgkin-Huxley model      thermosensitive neuron  
Received:  13 October 2021      Revised:  30 December 2021      Accepted manuscript online:  07 January 2022
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  64.70.qj (Dynamics and criticality)  
  87.19.L- (Neuroscience) (Glia)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51607056, 51737003, and 51877069) and State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology (Grant No. EERI PI2020006).
Corresponding Authors:  Hong-Bin Wang     E-mail:

Cite this article: 

Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝) Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system 2022 Chin. Phys. B 31 080507

[1] Shu R, Chen W and Xiao J H 2019 Acta Phys. Sin. 68 180503 (in Chinese)
[2] Ding X L, Jia B and Li Y Y 2019 Acta Phys. Sin. 68 180502 (in Chinese)
[3] Han F, Wang Z J, Fan H and Gong T 2015 Chin. Phys. Lett. 32 040502 (in Chinese)
[4] Duan L, Liu C, Zhao L C and Yang Z Y 2020 Acta Phys. Sin. 69 010501 (in Chinese)
[5] Zhang D, Shi J Q, Sun Y, Yang X H and Ye L 2019 Acta Phys. Sin. 68 240502 (in Chinese)
[6] Wang T, Zhou M Y and Fu Z Q 2020 Chin. Phys. B 29 058901
[7] Yue X L, Xiang Y L and Zhang Y 2019 Acta Phys. Sin. 68 180501 (in Chinese)
[8] Shao S L, Wang T, Song C H, Cui E N, Zhao H and Yao C 2019 Acta Phys. Sin. 68 178701 (in Chinese)
[9] Zhao W L and Jie Q L 2020 Chin. Phys. B 29 080302
[10] Ouannas A, Khennaoui A A, Momani S, Pham V T and Khazali R E 2020 Chin. Phys. B 29 050504
[11] Chen C, Ding Z X, Li S and Wang L H 2020 Chin. Phys. B 29 040202
[12] Li J H 2016 Chin. Phys. Lett. 33 120501
[13] Sun J C 2016 Chin. Phys. Lett. 33 100503
[14] Wang R, Guo J B, Hui J P, Wang Z, Liu H J, Xu Y N and Liu Y F 2019 Acta Phys. Sin. 68 180701 (in Chinese)
[15] Ding P F, Feng X Y and Wu C M 2020 Chin. Phys. B 29 108202
[16] Huang F, Chen H S and Shen C S 2015 Chin. Phys. Lett. 32 118902
[17] Wang Y X, Zhai J Q, Xu W W, Sun G Z and Wu P H 2015 Chin. Phys. Lett. 32 097401
[18] Zhai J Q, Li Y C, Shi J X, Zhou Y, Li X H, Xu W W, Sun G Z and Wu P H 2015 Chin. Phys. Lett. 32 047402
[19] Huang J W, Lv S X, Zhang Z S and Yuan H Q 2020 Chin. Phys. B 29 060505
[20] Araque A, Parpura V, Sanzgiri R P and Haydon P G 1999 Trends Neurosci. 22 208
[21] Du M M, Li J J, Yuan Z X, Fan Y C and Wu Y 2020 Chin. Phys. B 29 038701
[22] Amiri M, Montaseri G and Bahrami F 2011 Biol. Cybern. 105 153
[23] Araque A, Carmignoto G, Haydon P G, Oliet S H R, Robitaille R and Volterra A 2014 Neuron 81 728
[24] Porter J T and McCarthy D K D 1995 Glia 13 101
[25] Nadkarni S and Jung P 2004 Phys. Biol. 1 35
[26] Makovkin S Y, Shkerin I V, Gordleeva S Y and Ivanchenko M V 2020 Chaos Soliton. Fract. 138 109951
[27] Ji Q B, Zhou Y, Yang Z Q and Meng X Y 2015 Chin. Phys. Lett. 32 050501
[28] Nadkarni S and Jung P 2007 Phys. Biol. 4 1
[29] Erkan Y, Saraç Z and Yılmaz E 2019 Nonlinear Dyn. 95 3411
[30] Øyehaug L, Østby I, Lloyd C M, Omholt S W and Einevoll G T 2012 J. Comput. Neurosci. 32 147
[31] Carmen D V, Sverre M S, Ecem A, Evelien V H, Celine D, Slike V, Julie V, Robbrecht P, Mehmet I C, Akira M, Caghan K, Koichi K, Nathalie J Y and Emre Y 2019 Nat. Commun. 10 3830
[32] Kim J A and Connors B W 2012 Front. Cell. Neurosci. 6 27
[33] Feudel U, Neiman A, Pei X, Wojtenek W, Braun H, Huber M and Moss F 2000 Chaos 10 231
[34] Rossi K L, Budzinski R C, Boaretto B R R, Prado T L, Feudel U and Lopes S R 2021 Chaos 31 083121
[35] Budzinski R C, Boaretto B R R, Prado T L and Lopes S R 2019 Chaos Soliton. Fract. 123 35
[36] Xu Y, Liu M H, Zhu Z G and Ma J 2020 Chin. Phys. B 29 098704
[37] DeMaegd M L and Stein W 2020 PLoS Comput. Biol. 16 e1008057
[38] Lu L L, Kirunda J B, Xu Y, Kang W J, Ye R, Zhan X and Jia Y 2018 Eur. Phys. J. Special Top. 227 767
[39] Hyun N G, Hyun K, Oh S and Lee K 2020 Korean J. Physiol. Pharmacol. 24 349
[40] Kitamura M, Ishikawa K, Nei K, Nakajima K, Yamanoha B and Shimizu A 2018 High Pressure Res. 38 348
[41] Leisengang S, Ott D, Gerstberger R, Rummel C and Roth J 2018 Neuroreport 29 1468
[42] Zhang Y H, Liu H, Han Y R, Chen Y F, Zhang S H and Zhan Y 2017 Chin. Phys. Lett. 34 098701
[43] Du M M, Li J J, Wu Y and Yu G Y 2021 Cogn. Neurodyn.
[44] Hodgkin A L and Huxley A F 1990 Bull. Math. Biol. 52 25
[45] Fujisaki T, Wakatsuki H, Kudoh M and Shibuki K 1999 Neurosci. Res. 33 307
[46] Postlethwaite M, Hennig M H, Steinert J R, Graham B P and Forsythe I D 2007 J. Physiol. 579 69
[47] Braun H A, Huber M T, Dewald M, Schafer K and Voigt K 1998 Int. J. Bifurcat. Chaos 8 881
[48] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[49] Tchaptchet A 2018 Chaos 28 106327
[50] Yu Y Y, Yuan Z X, Fan Y C, Li J J and Wu Y 2020 Neural Plast. 2020 8864246
[51] Amiri M, Bahrami F and Janahmadi M 2012 J. Theor. Biol. 292 60
[52] Li J J, Du M M and Wang R 2016 Int. J. Bifurcat. Chaos 26 1650138
[53] Wang Q Y, Shi X and Lu Q C 2008 Coupling System Synchronized Dynamics (Beijing:Science Press) p. 62 (in Chinese)
[54] Budzinski R C, Boaretto B R R, Prado T L and Lopes S R 2019 Commun. Nonlinear Sci. 75 140
[55] Wang J, Ye W J, Liu S Q, Liu B and Jiang X F 2016 Chaos Soliton. Fract. 93 32
[56] Boaretto B R R, Budzinski R C, Prado T L, Kurths J and Lopes S R 2018 Chaos 28 106304
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[7] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[8] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[11] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[12] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[13] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[14] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[15] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
No Suggested Reading articles found!