Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010503    DOI: 10.1088/1674-1056/22/1/010503
GENERAL Prev   Next  

Chaos detection and control in a typical power system

Hossein Gholizadeh, Amir Hassannia, Azita Azarfar
Faculty of Electrical & Robotic Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran
Abstract  In this paper, a new chaotic system is introduced. The proposed system is a conventional power network that demonstrates a chaotic behavior under special operating conditions. Some features such as Lyapunov exponents and a strange attractor show the chaotic behavior of the system, which decreases the system performance. Two different controllers are proposed to control the chaotic system. The first one is a nonlinear conventional controller that is simple and easy to construct, but the second one is developed based on finite time control theory and optimized for faster control. A MATLAB-based simulation verifies the results.
Keywords:  chaos detection      chaos control      finite time control theory      synchronous generator  
Received:  30 May 2012      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
Corresponding Authors:  Amir Hassannia     E-mail:  amir.hassannia@gmail.com

Cite this article: 

Hossein Gholizadeh, Amir Hassannia, Azita Azarfar Chaos detection and control in a typical power system 2013 Chin. Phys. B 22 010503

[1] Colet P and Roy R 1994 Opt. Lett. 19 2056
[2] Sugawara T, Tachikawa M, Tsukamoto T and Shimizu T 1994 Phys. Rev. Lett. 72 3502
[3] Lu J, Wu X and Lü J 2002 Phys. Lett. A 305 365
[4] Li Z, Zhang B and Mao Z Y 1998 Proc. of IEEE Int. Conf. on Power Electrics and Drive Systems 1 150
[5] Wei D Q and Zhang B 2009 Chin. Phys. B 18 1399
[6] Si J K, Chen H, Wang X D, Jiao L and Yuan S Y 2008 J. Coal Sci. & Eng. 14 147
[7] Grillo S, Massucco S, Morini A, Pitto A and Silvestro F 2010 Int. J. Innovations in Energy Systems and Power 5
[8] Majdi M, Alomari and Jian G Z 2009 The 2nd Chaotic Modelling and Simulation Int. Conf. (Chania Crete, Greece)
[9] Qin Y H, Luo X Sh and Wei D Q 2010 Chin. Phys. B 19 050511
[10] Karrari M 2003 Power Systems Dynamic and Control (Tehran: AmirKabir University of Technology Press) (in Persian)
[11] Steven H and Strogatz, 1994 Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry and Engineering (New York: Perseus Books Publishing)
[12] Hubler A 1989 Helv Phys. Acta 62 343
[13] Hubler A and Luscher E 1989 Naturwissenschaften 76 67
[14] Jackson E A 1991 Phys. Rev. A 44 4839
[15] Abed E H and Fu J H 1986 Syst. Cont. Lett. 7 11
[16] Wang H O and Abed E H 1993 Proc. 1993 American Control Conference (San Fransisco) p. 2071
[17] Harb A M, Nayfeh A H, Chin C and Mili L 1999 Elec. Machines Pow. Syst. J. 28 11
[18] Harb A M and Zohdy M A 2002 Nonlinear Analysis: Modelling and Control 7 37
[19] Gao T, Chen Z and Yuan Z 2005 Acta Phys. Sin. 54 2574 (in Chinese)
[1] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[2] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[3] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[4] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[5] Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system
Manal Messadi, Adel Mellit, Karim Kemih, Malek Ghanes. Chin. Phys. B, 2015, 24(1): 010502.
[6] Control of fractional chaotic and hyperchaotic systems based on a fractional order controller
Li Tian-Zeng (李天增), Wang Yu (王瑜), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2014, 23(8): 080501.
[7] Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity
Yin Jiu-Li (殷久利), Zhao Liu-Wei (赵刘威), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(2): 020204.
[8] Complex dynamical behavior and chaos control for fractional-order Lorenz-like system
Li Rui-Hong (李瑞红), Chen Wei-Sheng (陈为胜). Chin. Phys. B, 2013, 22(4): 040503.
[9] Control of fractional chaotic system based on fractional-order resistor–capacitor filter
Zhang Lu (张路), Deng Ke (邓科), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2012, 21(9): 090505.
[10] Cascade adaptive control of uncertain unified chaotic systems
Wei Wei(魏伟), Li Dong-Hai(李东海), and Wang Jing(王京). Chin. Phys. B, 2011, 20(4): 040510.
[11] Controlling chaos in power system based on finite-time stability theory
Zhao Hui(赵辉), Ma Ya-Jun(马亚军), Liu Si-Jia(刘思佳), Gao Shi-Gen(高士根), and Zhong Dan(钟丹) . Chin. Phys. B, 2011, 20(12): 120501.
[12] No-chattering sliding mode control in a class of fractional-order chaotic systems
Chen Di-Yi(陈帝伊), Liu Yu-Xiao(刘玉晓), Ma Xiao-Yi(马孝义), and Zhang Run-Fan(张润凡) . Chin. Phys. B, 2011, 20(12): 120506.
[13] Adaptive stabilization of an incommensurate fractional order chaotic system via a single state controller
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping (杨世平) . Chin. Phys. B, 2011, 20(11): 110506.
[14] Chaotic behaviours and control of chaos in the p-Ge photoconductor
Feng Yu-Ling(冯玉玲), Zhang Xi-He(张喜和), and Yao Zhi-Hai(姚治海). Chin. Phys. B, 2010, 19(6): 060511.
[15] An efficient method of distinguishing chaos from noise
Wei Heng-Dong(魏恒东), Li Li-Ping(李立萍), and Guo Jian-Xiu(郭建秀). Chin. Phys. B, 2010, 19(5): 050505.
No Suggested Reading articles found!