Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 098109    DOI: 10.1088/1674-1056/22/09/098109
Special Issue: TOPICAL REVIEW — Low-dimensional nanostructures and devices
TOPICAL REVIEW—Low-dimensional nanostructures and devices Prev   Next  

Controllable synthesis of fullerene nano/microcrystals and their structural transformation induced by high pressure

Yao Ming-Guang (姚明光), Du Ming-Run (杜明润), Liu Bing-Bing (刘冰冰)
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  Fullerene molecules are interesting materials because of their unique structures and properties in mechanical, electrical, magnetic, and optical aspects. Current research is focusing on the construction of well-defined fullerene nano/microcrystals that possess desirable structures and morphologies. Further tuning the intermolecular interaction of the fullerene nano/microcrystals by use of pressure is an efficient way to modify their structures and properties, such as creation of nanoscale polymer structures and new hybrid materials, which expands the potential of such nanoscale materials for direct device components. In this paper, we review our recent progress in the construction of fullerene nanostructures and their structural transformation induced by high pressure. Fullerene nano/microcrystals with controllable size, morphology and structure have been synthesized through the self-assembly of fullerene molecules by a solvent-assisted method. By virtue of high pressure, the structures, components, and intermolecular interactions of the assemblied fullerene nano/microcrystals can be finely tuned, thereby modifying the optical and electronic properties of the nanostructures. Several examples on high pressure induced novel structural phase transition in typical fullerene nanocrystals with C60 or C70 cage serving as building blocks are presented, including high pressure induced amorphization of the nanocrystals and their bulk moduli, high pressure and high temperature (HPHT) induced polymerization in C60 nanocrystals, pressure tuned reversible polymerization in ferrocene-doped C60/C70 single crystal, as well as unique long-range ordered crystal with amorphous nanoclusters serving as building blocks in solvated C60 crystals, which brings new physical insight into the understanding of order and disorder concept and new approaches to the design of superhard carbon materials. The nanosize and morphology effects on the transformations of fullerene nanocrystals have also been discussed. These results provide the foundation for the fabrication of pre-designed and controllable geometries, which is critical in fullerenes and relevant materials for designing nanometer-scale electronic, optical, and other devices.
Keywords:  fullerenes      nanocrystals      high pressure      polymerization      structural transitions  
Received:  16 August 2013      Accepted manuscript online: 
PACS:  81.40.Vw (Pressure treatment)  
  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
  81.30.Hd (Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant Nos. 10979001, 11104105, 51025206, and 51032001), the Cheung Kong Scholars Programme of China, and the Changjiang Scholar and Innovative Research Team in Universities of China (Grant No. IRT1132).
Corresponding Authors:  Liu Bing-Bing     E-mail:  liubb@jlu.edu.cn

Cite this article: 

Yao Ming-Guang (姚明光), Du Ming-Run (杜明润), Liu Bing-Bing (刘冰冰) Controllable synthesis of fullerene nano/microcrystals and their structural transformation induced by high pressure 2013 Chin. Phys. B 22 098109

[1] Briseno A L, Mannsfeld S C B, Ling M M, Liu S, Tseng R J, Reese C, Roberts M E, Yang Y, Wudl F and Bao Z 2006 Nature 444 913
[2] Dresselhaus M S, Dresselhaus G and Eklund P C 1996 Science of Fullerenes and Carbon Nanotubes (San Diego: Academic Press)
[3] Liu H B, Li Y L, Jiang L, Luo H Y, Xiao S Q, Fang H J, Li H M, Zhu D B, Yu D P, Xu J and Xiang B 2002 J. Am. Chem. Soc. 124 13370
[4] Miyazawa K, Kuwasaki Y, Obayashi A and Kuwabara K 2002 J. Mater. Res. 17 83
[5] Minato J and Miyazawa K 2005 Carbon 43 2837
[6] Jin Y, Curry R J, Sloan J, Hatton R A, Chong L C, Blanchard N, Stolojan V, Kroto H W and Silva S R P 2006 J. Mater. Chem. 16 3715
[7] Wang L, Liu B B, Liu D D, Yao M G, Hou Y Y, Yu S D, Cui T, Li D M, Zou G T, Iwasiewicz A and Sundqvist B 2006 Adv. Mater. 18 1883
[8] Wang L, Liu B B, Yu S D, Yao M G, Liu D D, Hou Y Y, Cui T and Zou G T 2006 Chem. Mater. 18 4190
[9] Geng J F, Zhou W Z, Skelton P, Yue W B, Kinloch I A, Windle A H and Johnson B F G 2008 J. Am. Chem. Soc. 130 2527
[10] Sathish M and Miyazawa K 2007 J. Am. Chem. Soc. 129 13816
[11] Sathish M, Miyazawa K and Sasaki T 2007 Chem. Mater. 19 2398
[12] Ji H X, Hu J S, Wan L J, Tang Q X and Hu W P 2008 J. Mater. Chem. 18 328
[13] Larsen C, Barzegar H R, Nitze F, Wågberg T and Edman L 2012 Nanotechnology 23 344015
[14] Shin H S, Yoon S M, Tang Q, Chon B, Joo T and Choi H C 2008 Angew. Chem. Int. Ed. 47 693
[15] Lu G H, Li L G and Yang X N 2008 Small 4 601
[16] Céolin R, Tamarit J L, López D O, Barrio M, Agafonov V, Allouchi H, Moussa F and Szwarc H 1999 Chem. Phys. Lett. 314 21
[17] Sundqvist B 1999 Adv. Phys. 48 1
[18] Yamanaka S, Kubo A, Inumaru K, Komaguchi K, Kini N S, Inoue T and Irifune T 2006 Phys. Rev. Lett. 96 76602
[19] Yao M G, Pischedda V, Mezouar M, Sundqvist B, Wågberg T, Debord R and San Miguel A 2011 Phys. Rev B 84 144106
[20] Yao M G, Fan X H, Liu D D, Liu B B and Wågberg T 2012 Carbon 50 209
[21] Ganin A Y, Takabayashi Y, Khimyak Y Z, Margadonna S, Tamai A, Rosseinsky M J, Prassides K 2008 Nat. Mater 7 367
[22] Wakahara T, D’Angelo P, Miyazawa K, Nemoto Y, Ito O, Tanigaki N, Bradley D D C and Anthopoulos T D 2012 J. Am. Chem. Soc. 134 7204
[23] Takeya H, Kato R, Wakahara T, Miyazawa K, Yamaguchi T, Ozaki T, Okazaki H and Takano Y 2013 Mater. Res. Bull. 48 343
[24] Cui W, Liu D D, Yao M G, Li Q J, Liu R, Liu Z D, Wu W, Zou B, Cui T, Liu B B and Sundqvist B 2011 Diam. Relat. Mater. 20 93
[25] Wang L, Liu B B, Liu D D, Yao M G, Yu S D, Hou Y Y, Zou B, Cui T, Zou G T, Sundqvist B, Luo Z G, Li H, Li Y C, Liu J, Chen S J, Wang G R and Liu Y C 2007 Appl. Phys. Lett. 91 103112
[26] Yao M G, Andersson B M, Stenmark P, Sundqvist B, Liu B B and Wågberg T 2009 Carbon 47 1181
[27] Wang L 2006 Fabrication of Nano-crystals of Fullerenes with Different Shapes and Investigations of Their Physical Properties and High Pressure Induced Phase Transition (Ph.D dissertation) (Changchun: Jilin University) (in Chinese)
[28] Jonkheijm P, van der Schoot P, Schenning A P H J and Meijer E W 2006 Science 313 80
[29] Liu D D, Yao M G, Li Q J, Cui W, Wang L, Li Z P, Liu B, Lü H, Zou B, Cui T, Liu B B and Sundqvist B 2012 J. Raman Spectrosc. 43 737
[30] Yoo C S and Nellis W J 1992 Chem. Phys. Lett. 198 379
[31] Liu D D, Yao M G, Wang L, Li Q J, Cui W, Liu B, Liu R, Zou B, Cui T, Liu B B, Liu J, Sundqvist B and Wågberg T 2011 J. Phys. Chem. C 115 8918
[32] Hu J Y, Liang S C, Piao G Z, Zhang S J, Zhang Q H, Yang Y, Zhao Q, Zhu K, Liu Y L, Tang L Y, Li Y C, Liu J, Jin C Q and Yu R C 2011 J. Appl. Phys. 110 014301
[33] Zou Y G, Liu B B, Wang L C, Liu D D, Yu S D, Wang P, Wang T Y, Yao M G, Li Q J, Zou B, Cui T, Zou G T, Wågberg T, Sundqvist B and Mao H K 2009 Proc. Natl. Acad. Sci. USA 106 22135
[34] Wakahara T, Sathish M, Miyazawa K, Hu C P, Tateyama Y, Nemoto Y, Sasaki T and Ito O 2009 J. Am. Chem. Soc. 131 9940
[35] Konarev D V, Lyubovskaya R N, Drichko N V, Yudanva E I, Shul’ga Y M, Litvinov A L, Semkin V N and Tarasov B P 2000 J. Mater. Chem. 10 803
[36] Cui W, Yao M G, Liu D D, Li Q J, Liu R, Zou B, Cui T and Liu B B 2012 J. Phys. Chem. B 116 2643
[37] Cui W, Yao M G, Yao Z, Ma F X, Li Q J, Liu R, Liu B, Zou B, Cui T, Liu B B and Sundqvist B 2013 Carbon 62 447
[38] Hou Y Y, Liu B B, Wang L, Yu S D, Yao M G, Chen A, Liu D D, Cui T, Zou G T, Iwasiewicz A and Sundqvist B 2006 Appl. Phys. Lett. 89 181925
[39] Hou Y Y, Liu B B, Ma H A, Wang L, Zhao Q, Cui T, Hu Q, Chen A, Liu D D, Yu S D, Jia X P, Zou G T and Sundqvist B 2006 Chem. Phys. Lett. 423 215
[40] Liu B B, Hou Y Y, Wang L, Liu D D, Yu S D, Zou B, Cui T, Zou G T, Iwasiewicz-Wabnig A and Sundqvist B 2008 Diam. Relat. Mater. 17 620
[41] Liu D D, Yao M G, Li Q J, Cui W, Zou B, Cui T, Liu B B, Sundqvist B and Wågberg T 2011 Crystengcomm 13 3600
[42] Sundqvist B 2004 Struct. Bonding (Berlin) 109 85
[43] Wang L, Liu B B, Li H, Yang W G, Ding Y, Sinogeikin S V, Meng Y, Liu Z X, Zeng X C and Mao W L 2012 Science 337 825
[44] Yao M G, Cui W, Xiao J P, Chen S L, Cui J X, Liu R, Cui T, Zou B, Liu B B and Sundqvist B 2013 Appl. Phys. Lett. 103 071913
[45] Ferrari A C 2007 Solid State Commun. 143 47
[46] Sato K, Saito R, Oyama Y, Jiang J, Cancado L, Pimenta M, Jorio A, Samsonidze G G, Dresselhaus G and Dresselhaus M S 2006 Chem. Phys. Lett. 427 117
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[4] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[5] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[6] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[7] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[8] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[9] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[12] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[13] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[14] Pressure-induced novel structure with graphene-like boron-layer in titanium monoboride
Yuan-Yuan Jin(金园园), Jin-Quan Zhang(张金权), Shan Ling(凌山), Yan-Qi Wang(王妍琪), Song Li(李松), Fang-Guang Kuang(匡芳光), Zhi-Yan Wu(武志燕), and Chuan-Zhao Zhang(张传钊). Chin. Phys. B, 2022, 31(11): 116104.
[15] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
No Suggested Reading articles found!