Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 097805    DOI: 10.1088/1674-1056/21/9/097805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrospun fluorescein/polymer composite nanofibers and their photoluminescent properties

Zhang Zhi-Hua (张志华)a b, Long Yun-Ze (龙云泽)a d e, Yin Hong-Xin (尹红星)c, Sun Bin (孙彬)a, Zheng Jie (郑杰)a, Zhang Hong-Di (张红娣)a, Ji Xin-Ming (纪新明)b, Gu Chang-Zhi (顾长志)c
a College of Physics, Qingdao University, Qingdao 266071, China;
b State Key Laboratory of ASIC & System, Department of Microelectronics, Fudan University, Shanghai 200433, China;
c Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
d State Key Laboratory Cultivation Base of New Fiber Materials & Modern Textile, Qingdao University, Qingdao 266071, China;
e Key Laboratory of Photonics Materials and Technology in Universities of Shandong (Qingdao University), Qingdao 266071, China
Abstract  Fluorescein/polyvinyl pyrrolidone (PVP) composite nanofibers with different fluorescein loadings (with weight concentration of 0-5.0%) are fabricated via electrospinning. Morphologies, structures and photoluminescent (PL) properties of these straight, helical or wavelike fibers are characterized by scanning electron microscope (SEM), fluorescence microscope and spectrophotometer. It is found that the maximum emission of the as-spun fluorescein/PVP fibers occurs at 510 nm. The PL intensity of the composite fiber increases with the increase of fluorescein concentration, then fluorescence quenching appears when the concentration reaches 1.67%. The mechanism of fluorescence quenching of fluorescein is discussed. In addition, the composite fibers exhibit much stronger PL intensity than fluorescein/PVP bulk film owing to larger specific surface area, which makes them promising materials for biomedical applications such as probes and sensors.
Keywords:  nanofibers      electrospinning      fluorescence      self-quenching  
Received:  04 February 2012      Revised:  04 March 2012      Accepted manuscript online: 
PACS:  78.67.Uh (Nanowires)  
  81.07.Gf (Nanowires)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074138, 11004114, 60906054, and 50825206), the Shandong Provincial Natural Science Foundation for Distinguished Young Scholars, China (Grant No. JQ201103), the Taishan Scholars Program of Shandong Province, China, the National Basic Research Program of China (Grant No. 2012CB722705), and the National High Technology Research and Development Program of China (Grant No. 2011AA100706).
Corresponding Authors:  Long Yun-Ze     E-mail:  yunze.long@163.com

Cite this article: 

Zhang Zhi-Hua (张志华), Long Yun-Ze (龙云泽), Yin Hong-Xin (尹红星), Sun Bin (孙彬), Zheng Jie (孙彬), Zhang Hong-Di (郑杰), Ji Xin-Ming (张红娣), Gu Chang-Zhi (纪新明) Electrospun fluorescein/polymer composite nanofibers and their photoluminescent properties 2012 Chin. Phys. B 21 097805

[1] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F and Yan H Q 2003 Adv. Mater. 15 353
[2] Huang Y and Lieber C M 2004 Pure Appl. Chem. 76 2051
[3] Yuan H J, Chen Y Q, Yu F, Peng Y H, He X W, Zhao D and Tang D S 2011 Chin. Phys. B 20 036103
[4] Long Y Z, Li M M, Gu C Z, Wan M X, Duvail J L, Liu Z W and Fan Z Y 2011 Prog. Polym. Sci. 36 1415
[5] Huang Z M, Zhang Y Z, Kotaki M and Ramakrishna S 2003 Compos. Sci. Technol. 63 2223
[6] Agarwal S, Wendorff J H and Greiner A 2008 Polymer 49 5603
[7] Greiner A and Wendorff J H 2008 Adv. Polym. Sci. 219 107
[8] Reneker D H and Yarin A L 2008 Polymer 49 2387
[9] Zheng J, Long Y Z, Sun B, Zhang Z H, Shao F, Zhang H D, Zhang Z M and Huang J Y 2012 Chin. Phys. B 21 048102
[10] Xiang J, Song F Z, Shen X Q and Chu Y Q 2010 Acta Phys. Sin. 59 4794 (in Chinese)
[11] Xiang J, Shen X Q, Song F Z and Liu M Q 2009 Chin. Phys. B 18 4960
[12] Li M M, Long Y Z, Tan J S, Yin H X, Sui W M and Zhang Z M 2010 Chin. Phys. B 19 028102
[13] Li D, Wang Y L and Xia Y N 2003 Nano. Lett. 3 1167
[14] Wu Y Q, Carnell L A and Clark R L 2007 Polymer 48 5653
[15] Tan J S, Long Y Z and Li M M 2008 Chin. Phys. Lett. 25 3067
[16] Li M M, Long Y Z, Yang D Y, Sun J S, Yin H X, Zhao Z L, Kong W H, Jiang X Y and Fan Z Y 2011 J. Mater. Chem. 21 13159
[17] Liu W and Wang C 2007 Polish. J. Chem. 81 79
[18] Lv Y Y, Wu J and Xu Z K 2010 Sens. Actuators B Chem. 148 233
[19] Mosinger J, Lang K, til L, Jesenská S, Hostom J, Zelinger Z and Kubát P 2010 Langmuir 26 10050
[20] Davis B W, Niamnont N, Hare C D, Sukwattanasinitt M and Cheng Q 2010 ACS Appl. Mater. Interf. 2 1798
[21] Dersch R, Steinhart M, Boudriot U, Greiner A and Wendorff J H 2005 Polym. Adv. Technol. 16 276
[22] Yin H X, Long Y Z, Yu F, Zhao S J and She X L 2011 Mater. Sci. Forum 688 74
[23] Zhang H, Song H, Yu H Q, Bai X, Li S, Pan G, Dai Q, Wang T, Li W, Lu S, Ren X and Zhao H 2007 J. Phys. Chem. C 111 6524
[24] Liang X F, Li Y X, Peng W, Bai J, Zhang C Q and Yang Q B 2008 Eur. Polym. J. 44 3156
[25] Li M M, Long Y Z, Yin H X and Zhang Z M 2011 Chin. Phys. B 20 048101
[26] Han T, Reneker D H and Yarin A L 2007 Polymer 48 6064
[27] Tang C C, Chen J C, Long Y Z, Yin H X, Sun B and Zhang H D 2011 Chin. Phys. Lett. 28 056801
[28] Lakowicz J R 1986 Principles of Fluorescence Spectroscopy (New York: Plenum Press)
[29] Arik M, Celebi N and Onganer Y 2005 J. Photochem. Photobiol. A 170 105
[30] Egawa Y, Hayashida R, Seki T and Anzai J 2008 Talanta 76 736
[31] Agranovich V M and Galanin M D 1982 Electronic Excitation Energy Transfer in Condensed Matter (New York: North-Holland Publishing)
[32] Chen R F and Knutson J R 1988 Anal. Biochem. 172 61
[33] Sims P J and Wiedmer T 1984 Biochem. 23 3260
[34] Liu X L, Xu F Q, Li Z M and Zhang W H 2008 Polymer 49 2197
[35] Liu X L, Xu F Q, Li Z M, Zhu J F and Zhang W H 2008 Opt. Mater. 30 1861
[36] Massuyeau F, Duvail J L, Athalin H, Lorcy J M, Lefrant S, Wéry J and Faulques E 2009 Nanotechnology 20 155701
[37] Sui X M, Shao C L and Liu Y C 2005 Appl. Phys. Lett. 87 113
[1] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[2] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[3] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[4] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[5] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[6] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[7] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[8] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[9] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[10] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[11] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[12] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[13] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[14] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[15] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
No Suggested Reading articles found!