Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 097804    DOI: 10.1088/1674-1056/21/9/097804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Relative enhancement of photoluminescence intensity of passivated silicon nanocrystals in silicon dioxide matrix

Wu Zhi-Yong (吴志永), Liu Ke-Xin (刘克新), Ren Xiao-Tang (任晓堂)
State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871, China
Abstract  Photoluminescence (PL) intensity of passivated silicon nanocrystals (Si NCs) embeded in an SiO2 matrix is compared with that of unpassivated ones. We investigate the relative enhancement of PL intensity (IR) as a function of annealing temperature and implanted Si ion dose. The IR increases simultaneously with the annealing temperature. This demonstrates an increase in the number of dangling bonds (DBs) with the degree of Si crystallization via varying the annealing temperature. The increase in IR with implanted Si ion dose is also observed. We believe that the near-field interaction between DBs and neighboring Si NCs is an additional factor that reduces the PL efficiency of unpassivated Si NCs.
Keywords:  ion implantation      nanocrystals      photoluminescence      dangling bond  
Received:  09 December 2011      Revised:  18 April 2012      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  81.40.Tv (Optical and dielectric properties related to treatment conditions)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: Project supported by the State Key Laboratory of Nuclear Physics and Technology, China.
Corresponding Authors:  Wu Zhi-Yong     E-mail:  zywu75@pku.edu.cn

Cite this article: 

Wu Zhi-Yong (吴志永), Liu Ke-Xin (刘克新), Ren Xiao-Tang (任晓堂) Relative enhancement of photoluminescence intensity of passivated silicon nanocrystals in silicon dioxide matrix 2012 Chin. Phys. B 21 097804

[1] Canham L T 1990 Appl. Phys. Lett. 57 1046
[2] Lehmann V and Gösele U 1991 Appl. Phys. Lett. 58 856
[3] Irrera A, Franzo G, Iacona F, Canino A, Stefano G D, Sanfilippo D, Piana A, Fallica P G and Priolo F 2007 Physica E 38 181
[4] Mori N, Minari H, Uno S, Mizuta H and Koshida N 2011 Appl. Phys. Lett. 98 062104
[5] Dal Negro L, Cazzanelli M, Daldosso N, Gaburro Z, Pavesi L, Priolo F, Pacifici D, Franzo G and Iacona F 2003 Physica E 16 297
[6] Beaumont A and Souifi A 2009 Solid-State Electron. 53 42
[7] Perego M, Fanciulli M, Bonafos C and Cherkashin N 2006 Mater. Sci. Eng. C 26 835
[8] Ding L, Chen T P, Liu Y, Yang M and Wong J I 2007 J. Appl. Phys. 101 103525
[9] Rizza G C, Strobel M, Heinig K H and Bernas H 2001 Nucl. Instr. Meth. B 178 78
[10] Wang X X, Zhang J G, Ding L, Cheng B W, Ge W K, Yu J Z and Wang Q M 2005 Phys. Rev. B 72 195313
[11] Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C 1999 Phys. Rev. Lett. 82 1
[12] Qin G G and Li Y J 2003 Phys. Rev. B 68 085309
[13] Huh C, Kim K H, Kim B K, Kim W, Ko H, Choi C J and Sung G Y 2010 Adv. Mater. 22 5058
[14] Wang Y Q, Kong G L, Chen W D, Diao H W, Chen C Y and Zhang S B 2002 Appl. Phys. Lett. 81 22
[15] Neufeld E, Wang S, Apetz R, Buchal Ch, Carius R, White C W and Thomas D K 1997 Thin Solid Films 294 238
[16] Iwayama T S and Kurumado N 1998 J. Appl. Phys. 83 11
[17] Jung Y J and Yoon J H 2008 J. Korean Phys. Soc. 53 5
[18] Wu Z Y, Liu K X and Ren X T 2010 Chin. Phys. B 19 097806
[19] Sychugov I, Juhasz R, Valenta J and Linnros J 2005 Phys. Rev. Lett. 94 087405
[20] Min K S, Shcheglov K V, Yang C M, Atwater H A, Brongersma M L and Polman A 1996 Appl. Phys. Lett. 69 30
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[6] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[7] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[8] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[9] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[10] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[11] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[12] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[13] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[14] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[15] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
No Suggested Reading articles found!