Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 123302    DOI: 10.1088/1674-1056/ac1b91
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome

Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽)
Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  Thermally activated delayed fluorescence (TADF) molecules have attracted great attention as high efficient luminescent materials. Most of TADF molecules possess small energy gap between the first singlet excited state (S1) and the first triplet excited state (T1) to favor the up-conversion from T1 to S1. In this paper, a new TADF generation mechanism is revealed based on theoretical simulation. By systematic study of the light-emitting properties of SOBF-OMe in both toluene and in aggregation state, we find that the single SOBF-OMe could not realize TADF emission due to large energy gap as well as small up-conversion rates between S1 and T1. Through analysis of dimers, we find that dimers with intermolecular hydrogen bond (H-bond) are responsible for the generation of TADF, since smaller energy gap between S1 and T1 is found and the emission wavelength is in good agreement with experimental counterpart. The emission properties of SOBF-H are also studied for comparison, which reflect the important role of H-bond. Our theoretical results agree ith experimental results well and confirm the mechanism of H-bond induced TADF.
Keywords:  organic light-emitting diodes      thermally activated delayed fluorescence      intermolecular hydrogen bond      decay rates  
Received:  30 June 2021      Revised:  28 July 2021      Accepted manuscript online:  07 August 2021
PACS:  33.50.-j (Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
  33.50.Hv (Radiationless transitions, quenching)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974216, 11874242, 21933002, and 11904210), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA056), the Taishan Scholar Project of Shandong Province, China, and the Project funded by China Postdoctoral Science Foundation (Grant No. 2018M642689).
Corresponding Authors:  Chuan-Kui Wang, Li-Li Lin     E-mail:  ckwang@sdnu.edu.cn;linll@sdnu.edu.cn

Cite this article: 

Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽) Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome 2021 Chin. Phys. B 30 123302

[1] Wong M Y and Colman E Z 2017 Adv. Mater. 29 1605444
[2] Masui K, Nakanotani H and Adachi C 2013 Org. Electron. 14 2721
[3] Baldo M A, O'brien D F, You Y, Shoustikov A, Sibley S, Thompson M E and Forrest S R 1998 Nature 395 151
[4] Tang C W and Vanslyke S A 1987 App. Phys. Lett. 51 913
[5] Lv L L, Yuan K, Si C D, Zuo G F and Wang Y C 2020 Org. Electron. 81 105667
[6] Hu T P, Tu Z Y, Han G C and Yi Y P 2021 J. Phys. Chem. C 125 1249
[7] Lee C W and Lee J Y 2013 Adv. Mater. 25 5450
[8] Kim S Y, Jeong W I, Mayr C, Park Y S, Kim K H, Lee J H, Moon C K, Brütting W and Kim J J 2013 Adv. Funct. Mater. 23 3896
[9] Gan L, Gao K, Cai X, Chen D C and Su S J 2018 J. Phys. Chem. Lett. 9 4725
[10] Yu Y J, Wang X Q, Liu J F, Jiang Z Q and Liao L S 2021 Science 24 102123
[11] Nakanotani H, Tsuchiya Y and Adachi C 2021 Chem. Lett. 50 938
[12] Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L and Huang W 2014 Adv. Mater. 26 7931
[13] Yao L, Zhang S T, Wang R, Li W J, Shen F Z, Yang B and Ma Y G 2014 Angew. Chem. Int. Ed. Engl. 53 2119
[14] Ansari R, Shao W H, Yoon S J, Kim J and Kieffer J 2021 ACS Appl. Mater. Inter. 13 28529
[15] Zhang X Q, Fuentes-Hernandez C, Zhang Y D, Cooper M W, Barlow S, Marder S R and Kippelen B 2018 J. Appl. Phys. 124 055501
[16] Dos Santos P L, Ward J S, Bryce M R and Monkman A P 2016 J. Phys. Chem. Lett. 7 3341
[17] Lei Y X, Yang J F, Dai W B, Lan Y S, Yang J H, Zheng X Y, Shi J B, Tong B, Cai Z X and Dong Y P 2021 Chem. Sci. 12 6518
[18] Stavrou K, Franca L G and Monkman A P 2020 ACS Appl. Electron. Mater. 2 2868
[19] Hauenstein C, Gottardi S, Bobbert P A, Coehoorn R and van Eersel H 2020 J. Appl. Phys. 128 075501
[20] Xie Z L, Huang Q Y, Yu T, Wang L Y, Mao Z, Li W L, Yang Z, Zhang Y, Liu S W, Xu J R, Chi Z G and Aldred M P 2017 Adv. Funct. Mater. 27 1703918
[21] Shi Y Z, Wang K, Tsuchiya Y, Liu W, Komino T, Fan X C, Sun D M, Dai G L, Chen J X, Zhang M, Zheng C J, Xiong S Y, Ou X M, Yu J, Jie J S, Lee C S, Adachi C and Zhang X H 2020 Mater. Horiz. 7 2734
[22] Chen J R, Yu T, Ubba E, Xie Z L, Yang Z Y, Zhang Y, Liu S W, Xu J R, Aldred M P and Chi Z G 2019 Adv. Opt. Mater. 7 1801593
[23] Wang B, Wang X J, Wang W L and Liu F Y 2016 J. Phys. Chem. C 120 21850
[24] Lin L L, Wang Z J, Fan J Z and Wang C K 2017 Org. Electron. 41 17
[25] Fan J Z, Lin L L and Wang C K 2016 Chem. Phys. Lett. 652 16
[26] Fan D, Yi Y P, Li Z D, Liu W J, Peng Q and Shuai Z G 2015 J. Phys. Chem. A 119 5233
[27] Fan J Z, Cai L, Lin L L and Wang C K 2017 Phys. Chem. Chem. Phys. 19 29872
[28] Zhang K, Zhang Y C, Ma Y Y, Fan J Z, Wang C K and Lin L L 2020 J. Phys. Chem. A. 124 8540
[29] Zhang K, Yang F, Zhang Y C, Ma Y Y, Fan J Z, Fan J, Wang C K and Lin L L 2021 J. Phys. Chem. Lett. 12 1893
[30] Sun L J, Hua W J, Liu Y, Tian G J, Chen M X, Chen M X, Yang F X, Wang S F, Zhang X T, Luo Y and Hu W P 2019 Angew. Chem. Int. Ed. Engl. 58 11311
[31] Zhang Y C, Ma Y Y, Zhang K, Wang C K, Lin L L and Fan J Z 2020 J. Lumin. 221 117046
[32] Liu J, Zhang Y C, Zhang K, Fan J Z, Wang C K and Lin L L 2019 Org. Electron. 71 212
[33] Liu J, Fan J Z, Zhang K, Zhang Y C, Wang C K and Lin L L 2020 Chin. Phys. B 29 088504
[34] Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A and Grimme S 2017 Phys. Chem. Chem. Phys. 19 32184
[35] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Rev.A.03, Inc., Wallingford, CT
[36] Mccumber D E 1964 Phys. Rev. 136 A954
[37] Shuai Z G and Peng Q 2014 Phys. Rep. 537 123
[38] Peng Q, Yi Y P, Shuai Z G and Shao J S 2007 J. Chem. Phys. 126 114302
[39] Shuai Z G 2020 Chin. J. Chem. 38 1223
[40] Lefebvre C, Rubez G, Khartabil H, Boisson J C, Contreras G J and Henon E 2017 Phys. Chem. Chem. Phys. 19 17928
[41] Lu T and Chen F W 2012 J. Comput.Chem. 33 580
[42] Weiner S J, Kollman P A, Case D A, Singh U C, Ghio C, Alagona G, Profeta S Jr and Weiner P 1984 J. Am. Chem. Soc. 106 765
[43] Martin R L 2003 J. Chem. Phys. 118 4775
[44] Xu S, Yang Q Q, Wan Y F, Chen R F, Wang S, Si Y B, Yang B C, Liu D, Zheng C and Huang W 2019 J. Mater. Chem. C 7 9523
[45] Chen R F, Tang Y T, Wan Y F, Chen T, Zheng C, Qi Y Y, Cheng Y F and Huang W 2017 Sci. Rep. 7 6225
[46] Chen L F, Zhang S T, Li H, Chen R F, Jin L, Yuan K, Li H H, Lu P, Yang B and Huang W 2018 J. Phys. Chem. Lett. 9 5240
[47] Liu T T, Chen X J, Zhao J, Wei W C, Mao Z, Wu W, Jiao S B, Liu Y, Yang Z Y and Chi Z G 2021 Chem. Sci. 12 5171
[48] Dalton, A Molecular Electronic Structure Program
[1] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[2] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[3] Enhancement of Förster energy transfer from thermally activated delayed fluorophores layer to ultrathin phosphor layer for high color stability in non-doped hybrid white organic light-emitting devices
Zijun Wang(王子君), Juan Zhao(赵娟), Chang Zhou(周畅), Yige Qi(祁一歌), Junsheng Yu(于军胜). Chin. Phys. B, 2017, 26(4): 047302.
[4] Luminescent properties of thermally activated delayed fluorescence molecule with intramolecular π-π interaction betweendonor and acceptor
Lei Cai(蔡磊), Jianzhong Fan(范建忠), Xiangpeng Kong(孔祥朋), Lili Lin(蔺丽丽), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(11): 118503.
[5] Enhancement of electroluminescent properties of organic optoelectronic integrated device by doping phosphorescent dye
Shu-ying Lei(雷疏影), Jian Zhong(钟建), Dian-li Zhou(周殿力), Fang-yun Zhu(朱方云), Chao-xu Deng(邓朝旭). Chin. Phys. B, 2017, 26(11): 117001.
[6] High color rendering index white organic light-emitting diode using levofloxacin as blue emitter
Miao Yan-Qin (苗艳勤), Gao Zhi-Xiang (高志翔), Zhang Ai-Qin (张爱琴), Li Yuan-Hao (李源浩), Wang Hua (王华), Jia Hu-Sheng (贾虎生), Liu Xu-Guang (刘旭光), Tsuboi Taiju. Chin. Phys. B, 2015, 24(5): 057802.
[7] Pure blue and white light electroluminescence in a multilayer organic light-emitting diode using a new blue emitter
Wei Na (魏娜), Guo Kun-Ping (郭坤平), Zhou Peng-Chao (周朋超), Yu Jian-Ning (于建宁), Wei Bin (魏斌), Zhang Jian-Hua (张建华). Chin. Phys. B, 2014, 23(7): 077802.
[8] Tandem white organic light-emitting diodes adopting a C60:rubrene charge generation layer
Bi Wen-Tao (毕文涛), Wu Xiao-Ming (吴晓明), Hua Yu-Lin (华玉林), Sun Jin-E (孙金娥), Xiao Zhi-Hui (肖志慧), Wang Li (王丽), Yin Shou-Gen (印寿根). Chin. Phys. B, 2014, 23(1): 017803.
[9] Improved light extraction of organic light emitting diodes with a nanopillar pattering structure
Gao Zhi-Xiang (高志翔), Wang Hua (王华), Hao Yu-Ying (郝玉英), Miao Yan-Qin (苗艳勤), Xu Bing-She (许并社). Chin. Phys. B, 2013, 22(11): 116801.
[10] White organic light-emitting diodes based on combined electromer and monomer emission in doubly-doped polymers
Meng Ling-Chuan (孟令川), Lou Zhi-Dong (娄志东), Yang Sheng-Yi (杨盛谊), Hou Yan-Bing (侯延冰), Teng Feng (滕枫), Liu Xiao-Jun (刘小君), Li Yun-Bai (李云白 ). Chin. Phys. B, 2012, 21(8): 088504.
[11] Improved performance of organic light-emitting diodes with dual electron transporting layers
Jiao Zhi-Qiang(焦志强), Wu Xiao-Ming(吴晓明), Hua Yu-Lin(华玉林), Mu Xue(穆雪), Bi Wen-Tao(毕文涛), Bai Juan-Juan(白娟娟), and Yin Shou-Gen(印寿根) . Chin. Phys. B, 2012, 21(6): 067202.
[12] Highly efficient blue fluorescent OLEDs with doped double emitting layers based on p–n heterojunctions
Su Yue-Ju(苏跃举), Wu Xiao-Ming(吴晓明), Hua Yu-Lin(华玉林), Shen Li-Ying(申利莹), Jiao Zhi-Qiang(焦志强), Dong Mu-Sen(董木森), and Yin Shou-Gen(印寿根). Chin. Phys. B, 2012, 21(5): 058503.
[13] Investigation of inter-molecular hydrogen bonding in the binary mixture (acetone + water) by concentration dependent Raman study and ab initio calculations
Ouyang Shun-Li(欧阳顺利), Wu Nan-Nan(吴楠楠), Sun Cheng-Lin(孙成林),Liu Jing-Yao(刘靖尧), Li Zuo-Wei(里佐威), and Gao Shu-Qin(高淑琴). Chin. Phys. B, 2010, 19(9): 093103.
[14] Dependence of charge trapping of fluorescent and phosphorescent dopants in organic light-emitting diodes on the dye species and current density
Wei Bin(魏斌), Liao Ying-Jie (廖英杰), Liu Ji-Zhong (刘纪忠), Lu Lin(路林), Cao Jin(曹进), Wang Jun (王军), and Zhang Jian-Hua (张建华). Chin. Phys. B, 2010, 19(3): 037105.
[15] White organic light-emitting diodes based on electroplex from polyvinyl carbazole and carbazole oligomers blends
Chen Fei-Peng(陈飞鹏), Xu Bin(徐斌), Zhao Zu-Jin(赵祖金), Tian Wen-Jing (田文晶), LÜ Ping(吕萍), and Im Chan. Chin. Phys. B, 2010, 19(3): 037801.
No Suggested Reading articles found!