Abstract For a three-level atom, two nondegenerate (even microwave and optical) electric dipole transitions are usually allowed; for either of these, the fluorescence spectra are well-described in terms of spontaneous transitions from a triplet of dressed sublevels to an adjacent lower-lying triplet. When the three dressed sublevels are equally spaced from each other, a remarkable feature known as degenerate cascade fluorescence takes place, which displays a five-peaked structure. We show that a single cavity can make all the spectral lines extremely narrow, whether they arise from cavity-coupled or cavity-free transitions. This effect is based on intrinsic cascade lasing feedback and makes it possible to use a single microwave cavity (even a bad cavity) to narrow the spectral lines in the optical frequency regime.

Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 61875067 and 61178021).

Corresponding Authors:
Xiang-Ming Hu
E-mail: xmhu@mail.ccnu.edu.cn

Cite this article:

Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平) Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity 2021 Chin. Phys. B 30 064211

[1] Loudon R 2000 The Quantum Theory of Light 3rd ed (Oxford: Oxford University Press) [2] Walls D F and Milburn G J 2008 Quantum Optics 2nd ed (Berlin: Springer-Verlag) [3] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) [4] Gardiner C W and Zoller P 2000 Quantum Noise 2nd ed (Berlin: Springer-Verlag) [5] Carmichael H J 2002 Statistical Methods in Quantum Optics 2nd ed (Berlin: Springer) [6] Meystre P and Sargent III M 2007 Elements of Quantum Optics 4th ed (Berlin: Springer-Verlag) [7] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1992 Atom-photon Interactions (New York: Wiley) [8] Boyd R W 2008 Nonlinear Optics 3rd ed (New York: Elsevier) [9] Narducci L M, Scully M O, Oppo G L, Ru P and Tredicce J R R 1990 Phys. Rev. A 42 1630 [10] Zhu S Y, Narducci L M and Scully M O 1995 Phys. Rev. A 52 4791 [11] Agarwal G S 1996 Phys. Rev. A 54 R3734 [12] Zhou P and Swain S 1996 Phys. Rev. Lett. 77 3995 [13] Zhou P and Swain S 2000 Phys. Rev. A 56 3011 [14] Keitel C H 1999 Phys. Rev. Lett. 83 1307 [15] Freedhoff H and Quang T 1993 J. Opt. Soc. Am. B 10 1337 [16] Freedhoff H and Quang T 1994 Phys. Rev. Lett. 72 474 [17] Peng J S, Li G X, Zhou P and Swain S 2000 Phys. Rev. A 61 063807 [18] Berman P R 1994 Cavity Quantum Electrodynamics (New York: Academic Press) [19] Kleppner D 1981 Phys. Rev. Lett. 47 233 [20] Goy P, Raimond J M, Gross M and Haroche S 1983 Phys. Rev. Lett. 50 1903 [21] Sanchez-Mondragon J, Narozhny N and Eberly J 1983 Phys. Rev. Lett. 51 550 [22] Haken H 1964 Z. Phys. 181 96 [23] Quang T and Freedhoff H 1993 Phys. Rev. A 47 2285 [24] Huang C, Hu X and Hu Q 2017 Opt. Express 26 4807 [25] Xue Y L, Zhang K, Feng B H and Li Z Y 2016 Chin. Phys. Lett. 33 74204 [26] Mollow B R 1969 Phys. Rev. 188 1969 [27] Mollow B R 1972 Phys. Rev. A 5 2217 [28] Wu F Y, Ezekiel S, Ducloy M and Mollow B R 1977 Phys. Rev. Lett. 38 1077 [29] Khitrova G, Valley J F and Gibbs H M 1988 Phys. Rev. Lett. 60 1126 [30] Mompart J and Corbalán R 2000 J. Opt. B: Quantum Semiclass. Opt. 2 R7 [31] Lezama A, Zhu Y, Kanskar M and Mossberg T W 1990 Phys. Rev. A 41 1576 [32] Lewenstein M, Zhu Y and Mossberg T W 1990 Phys. Rev. Lett. 64 3131 [33] Zakrzewski J, Lewenstein M and Mossberg T W 1991 Phys. Rev. A 44 7717 [34] Zakrzewski J, Lewenstein M and Mossberg T W 1991 Phys. Rev. A 44 7732 [35] Zakrzewski J, Lewenstein M and Mossberg T W 1991 Phys. Rev. A 44 7746 [36] Gauthier D J, Wu Q, Morin S E and Mossberg T W 1992 Phys. Rev. Lett. 68 464 [37] Zhu Y, Wu Q, Morin S and Mossberg T W 1990 Phys. Rev. Lett. 65 1200 [38] Lawande S V, D’Souza R and Puri R R 1987 Phys. Rev. A 36 3228 [39] Jayarao A S, Lawande S V and D’Souza R 1989 Phys. Rev. A 39 3464 [40] Gauthier D J, Zhu Y and Mossberg T W 1991 Phys. Rev. Lett. 66 2460 [41] Peng J S and Li G X 1998 Introduction to modern quantum optics (Singapore: World Scientific) [42] Arimondo E 1996 Prog. Opt. 35 257 [43] Zibrov A S, Matsko A B and Scully M O 2002 Phys. Rev. Lett. 89 103601 [44] Li H B, Sautenkov V A, Rostovtsev Y V, Welch G R, Hemmer P R and Scully M O 2009 Phys. Rev. A 80 023820 [45] Hafezi M, Kim Z, Rolston S L, Orozco L A, Lev B L and Taylor J M 2012 Phys. Rev. A 85 020302(R) [46] Zhao Y, Wu C K,Ham B S, Kim M K and Awad E 1997 Phys. Rev. Lett. 79 641 [47] Fleischhauer M, Keitel C H, Narducci L M, Scully M O, Zhu S Y and Zubairy M S 1992 Opt. Commun. 94 599 [48] Hu X M and Peng J S 2000 J. Phys. B: At. Mol. Opt. Phys. 33 921 [49] Ferguson M, Ficek Z and Dalton B 1996 Phys. Rev. A 54 2379 [50] Macovei M, Evers J and Keitel C H 2004 Europhys. Lett. 68 391 [51] Drummond P D and Walls D F 1981 Phys. Rev. A 23 2563 [52] Carmichael H J, Walls D F, Drummond P D and Hassan S S 1983 Phys. Rev. A 27 3112 [53] Reid M D 1988 Phys. Rev. A 37 4792 [54] Jia W Z, Wei L F and Wang Z D 2011 Phys. Rev. A 83 023811 [55] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge University) [56] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [57] Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003 [58] Jing M, Hu Y, Ma J, et al. 2020 Nat. Phys. 16 911 [59] Wu Y L, Li R, Rui Y, Jiang H F and Wu H B 2018 Acta Phys. Sin. 67 163201 (in Chinese) [60] Hao L P, Xue Y M, Fan J B, et al. 2020 Chin. Phys. B 29 033201

Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.