CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection |
Hui-Ju Cao(曹会菊)1, Hong-Wen Cao(曹红文)1, Yue Li(李月)1, Zhen Sun(孙祯)1, Yun-Fan Yang(杨云帆)1, Ti-Feng Jiao(焦体峰)2,†, and Ming-Li Wang(王明利)1,‡ |
1. State Key Laboratory of Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China; 2. Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract The preparation of surface-enhanced fluorescence (SEF) substrates is often influenced by experimental strategies and factors such as the morphology and size of the nanostructures. In this study, using the natural reed leaves (RLs) without any special pretreatment as the substrate, metal silver is modified by magnetron sputtering technology to prepare a stable and efficient SEF system. The abundant “hedgehog-like”protrusions on the RL substrate surface can generate high-density “hot spots”, thus enhancement factor (EF) is enhanced up to 3345 times. The stability and reproducibility are verified in many measurements. The contribution of the intervention of silver nanostructure to the radiation attenuation process of fluorescent molecules is analyzed with the aid of Jablonski diagrams. Three-dimensional (3D) finite difference time domain (FDTD) simulates the spatial electric field and “hot spots”distribution of the substrate. The “hedgehog-like”protrusion structure generates multiple “hot spots”, which produce an excellent local surface plasmon resonance (LSPR) effect and provide higher fluorescence signal. Finally, RL/Ag-35 substrate is used to detect crystal violet (CV), and the detection limit is as low as 10-13 M. This “hedgehog-like”SEF substrate provides a new strategy for the trace detection of CV, which has a good practical application value.
|
Received: 25 April 2022
Revised: 16 May 2022
Accepted manuscript online:
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674275, 21872119, 22072127, and 12104392) and the Science and Technology Project of Hebei Education Department, China (Grant No. ZD2019069 and QN2021142)). |
Corresponding Authors:
Ti-Feng Jiao, Ming-Li Wang
E-mail: tfjiao@ysu.edu.cn;wml@ysu.edu.cn
|
Cite this article:
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利) A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection 2022 Chin. Phys. B 31 107801
|
[1] Zhang Y, Li S, Zhang H and Xu H W 2021 Bioconjug. Chem. 32 4 [2] Cui L, Li R, Mu T, Wang J, Zhang W and Sun M Spectrochim 2022 Spectrochim. Acta A Mol. Biomol. 264 120283 [3] Liu X, Wang R, Ma J, Zhang J, Jiang P, Wang Y and Tu G 2021 J. Mater. Sci. Technol. 69 89 [4] Fereja S, Li P, Guo, Fang Z, Zhang Z, Zhuang Z, Zhang X, Liu K and Chen W 2021 Talanta 233 122469 [5] Omidvar A, RashidianVaziri M R, Jaleh B, Partovi Shabestari N and Noroozi M 2016 Chin. Phys. B 25 118102 [6] Yu L, Chen H, Yue J, Chen X, Sun M, Hou J, Alamry K A, Marwani H M, Wang X and Wang S 2020 Talanta 207 120297 [7] Thao N T, Hoang T X, Phan T B, Kim J Y, Ta H K T, Trinh K T L and Tran N H T 2021 Dalton Trans. 50 6962 [8] Cao H, Guo L, Sun Z, Jiao T and Wang M 2022 Chin. Phys. B 31 037803 [9] Della Ventura B, Gelzo M, Battista E, Alabastri A, Schirato A, Castaldo G, Corso G, Gentile F and Velotta R 2019 ACS Appl. Mater. Interface 11 3753 [10] Kannegulla A, Liu Y, Wu B and Cheng L J 2018 J. Phys. Chem. C 122 770 [11] Choi J H, Lim J, Shin M, Paek S H and Choi J W 2021 Nano Lett. 21 693 [12] Yang R, Cheng Y and Sun M 2021 Opt. Commun. 498 127224 [13] Badshah M A, Koh N Y, Zia A W, Abbas N, Zahra Z and Saleem M W 2020 Nanomaterials 10 1749 [14] Wang B 2020 Chin. Phys. B 29 045202 [15] Strobbia P, Languirand E and Cullum B M 2015 Opt. Eng. 54 100902 [16] Sergeyeva T, Yarynka D, Lytvyn V, Demydov P, Lopatynskyi A, Stepanenko Y, Brovko O, Pinchuk A and Chegel V 2022 Analyst 147 1135 [17] Sun J, Feng A, Wu X, Che X and Zhou W 2021 Talanta 231 122334 [18] Lu X, Lee S, Kim J, Abbas N, Badshah M A and Kim S M 2021 Biosens. Bioelectron. 175 112881 [19] Zhang Y, Chen W, Fu T, Sun J, Zhang D, Li Y, Zhang S and Xu H 2019 Nano Lett. 19 6284 [20] Wang S, He D, Wang Y, Hu Y, Duan, Fu M and Wang W 2014 Chin. Phys. B 23 097803 [21] Hao Z, Li N, Cao H, Guo L, Cao H, Li N, Cao L, Liu H, Jiao T and Wang M 2022 J. Lumin. 243 118684 [22] Yao L, Dai P, Ouyang L and Zhu L 2021 Microchem. J. 160 105728 [23] Li N, Hao Z, Cao H, Guo L, Cao H, Li N, Yang Y, Jiao T, Liu H and Wang M 2022 Opt. Laser. Technol. 148 107765 [24] Chou S, Yu C, Yen Y, Lin K, Chen H and Su W 2015 Anal. Chem. 87 6017 [25] Guo L, Cao H, Cao L, Yang Y and Wang M 2022 Opt. Commun. 510 127921 [26] Wang R, Yan X, Ge B, Zhou J, Wang M, Zhang L and Jiao T 2020 ACS Sustain. Chem. Eng. 8 4521 [27] Ma Y, Shao J, Zhang Y, Lu B, Zhang S, Sun Y, Qu X and Chen Y 2015 Chin. Phys. B 24 080702 [28] He Y, Wang R, Jiao T, Yan X, Wang M, Zhang L, Bai Z, Zhang Q and Peng Q 2019 ACS Sustain. Chem. Eng. 7 10888 [29] Jiang H, Liu Y, Zhang Y, Liu Y, Fu X, Han D, Song Y, Ren L and Sun H 2018 ACS Appl. Mater. Interfaces 10 18416 [30] Wang M, Shang Z, Yan X, Shi G, Cao H, Ma W and Jiao T 2021 Opt. Commun. 481 126522 [31] Li M, Cushing S K and Wu N 2015 Analyst 140 386 [32] Dong J, Zheng H, Yan X, Sun Y and Zhang Z 2012 Appl. Phys. Lett. 100 051112 [33] Liaw J, Tsai H and Huang C 2012 Plasmonics 7 543 [34] Zhang Y, Yang C, Zhang G, Peng Z, Yao L, Wang Q, Cao Z, Mu Q and Xuan L 2017 Opt. Mater. 72 289 [35] Li J, Li C and Aroca R 2017 Chem. Soc. Rev. 46 3962 [36] Dragan A I, Bishop E S, Casas-Finet J R, Strouse R J, McGivney J, Schenerman M A and Geddes C D 2012 Plasmonics 7 739 [37] Shan F, Su D, Li W, Hu W and Zhang T 2018 AIP Adv. 8 025219 [38] Lukomska J, Malicka J, Gryczynski I, Leonenko Z and Lakowicz J R 2005 Biopolymers 77 31 [39] Li M, Liu H and Ren X 2017 Biosens. Bioelectron. 89 899 [40] Aslan K, Leonenko Z, Lakowicz J R and Geddes C D 2005 J. Fluoresc. 15 643 [41] Cang H, Labno A, Lu C, Yin X, Liu Mi, Gladden C, Liu Y and Zhang X 2011 Nature 469 385 [42] Yang L, Xiang X, Miao X, Li L, Yuan X, Yan Z, Zhou G, Lv H, Zheng W and Zu X 2016 Chin. Phys. B 25 014210 [43] Zheng H, Xue H, Zhang Y and Shen Z 2001 Biosens. Bioelectron. 17 541 [44] Lin S, Zhang X, Zhao W, Chen Z, Du P, Zhao Y, Wu Z and Xu H 2018 Chin. Phys. B 27 028707 [45] Vithalkar S H and Jugade R M 2020 Mater. Today 29 4 [46] Zhang M, Chen Z, Wang Z, Zheng Z and Wang D P 2019 J. Mater. Res. 17 2935 [47] Zhou J, Qing M, Ling Y, Wang L, Li N and Luo H 2021 Sens. Actuators B Chem. 340 129968 [48] Dong J, Zhao K, Wang Q, Yuan J, Han Q, Gao W, Wang Y, Qi J and Sun M 2021 Opt. Express 29 36857 [49] Wu C, Li F, Lv F, Yao P, Bi M and Xue T 2021 Mater. Res. Express 8 015008
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|