Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054204    DOI: 10.1088/1674-1056/ab7b50

Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center

Ruimin Wang(王瑞敏)1, Irfan Ahmed2,3, Faizan Raza1, Changbiao Li(李昌彪)1, Yanpeng Zhang(张彦鹏)1,2
1 School of Science&Key Laboratory for Physical Electronics and Devices of the Ministry of Education&Shaanxi Key Laboratory of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049, China;
2 Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China;
3 Electrical Engineering Department, Sukkur IBA University, 65200, Sindh, Pakistan
Abstract  We report the experimental results of hybrid four-wave mixing and fluorescence signals from nitrogen-vacancy (NV) centers in diamond. The fluorescence signals are slowed owing to dark state. The observed delay time of light slowing due to interconversion between NV- and NV0 is about 6.4 μs. The relative intensities of read-out signals change with the wavelength and power of writing pulse. Based on light slowing, we present the model of all-optical time division multiplexing. The intensity ratio in different demultiplexed channels is modulated by the wavelength and power of control field. It has potential applications in quantum communication and all-optical network.
Keywords:  nonlinear optics      fluorescence      time division multiplexing  
Received:  16 November 2019      Revised:  15 January 2020      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303700 and 2018YFA0307500) and the National Natural Science Foundation of China (Grant Nos. 61605154, 11604256, and 11804267).
Corresponding Authors:  Ruimin Wang, Yanpeng Zhang     E-mail:;

Cite this article: 

Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏) Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center 2020 Chin. Phys. B 29 054204

[1] Maurer P C, Kucsko G, Latta C, Jiang L, Yao N Y, Bennett S D, Pastawski F, Hunger D, Chisholm N, Markham M, Twitchen D J, Ciac J I and Lukin M D 2012 Science 336 1283
[2] Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuoschi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Mater. 8 383
[3] Goldman M L, Sipahigil A, Doherty M W, Yao N Y, Bennett S D, Markham M, Twitchen D J, Manson N B, Kubanek A and Lukin M D 2015 Phys. Rev. Lett. 114 145502
[4] Goldman M L, Doherty M W, Sipahigil A, Yao N Y, Bennett S D, Manson N B, Kubanek A and Lukin M D 2015 Phys. Rev. B 91 165201
[5] Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303
[6] Han K Y, K I M S K, Eggeling C and Hell S W 2010 Nano Lett. 10 3199
[7] Waldherr G, Beck J, Steiner M, Neumann P, Gali A, Frauenheim Th, Jelezko F and Wrachtrup J 2011 Phys. Rev. Lett. 106 157601
[8] Siyushev P, Pinto H, Voros M, Gali A, Jelezko F and Wrachtrup J 2013 Phys. Rev. Lett. 110 167402
[9] Chen X D, Zou C L, Sun F W and Guo G C 2013 Appl. Phys. Lett. 103 013112
[10] Dutt M V G, Childress L, Jiang E T L, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312
[11] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[12] Shang Y X, Hong F, Dai J H, Yu H, Lu Y N, Liu E K, Yu X H, Liu G Q and Pan X Y 2019 Chin. Phys. Lett. 36 086201
[13] Ye J F, Jiao Z, Ma K, Huang Z Y, Lv H J and Jiang F J 2019 Chin. Phys. B 28 047601
[14] Li S, Li C H, Zhao B W, Dong Y, Li C C, Chen X D, Ge Y S and Sun F W 2017 Chin. Phys. Lett. 34 096101
[15] Wang H H, Fan Y F, Wang R, Wang L, Du D M, Kang Z H, Jiang Y, Wu J H and Gao J Y 2009 Opt. Lett. 34 2596
[16] Riesen N, Pan X Z, Badek K, Ruan Y L, Monro T M, Zhao J B, Heidepriem H E and Riesen H 2018 Opt. Express 26 12266
[17] Wang R M, Pargorn P, Raza F, Ahme I, Wang H X and Zhang Y P 2018 Laser Phys. Lett. 15 085401
[18] Du S W, Wen J M, Rubin M H and Yin G Y 2007 Phys. Rev. Lett. 98 053601
[19] Du S W, Oh Eun, Wen J M and Rubin M H 2007 Phys. Rev. B 76 013803
[20] Aslam N, Waldherr G, Neumann P, Jelezko F and Wrachtrup J 2013 New J. Phys. 15 013064
[21] Han K Y, Wildanger D, Rittweger E, Meijer J, Pezzagna S, Hell S W and Eggeling C 2012 New J. Phys. 14 123002
[1] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[4] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[5] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[6] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[7] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[8] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[9] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[10] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[11] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[12] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[13] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[14] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[15] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
No Suggested Reading articles found!