Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 053301    DOI: 10.1088/1674-1056/ac43a4

Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide

Xi-Lin Bai(白西林)1,†, Xue-Dong Zhang(张雪东)1, Fu-Qiang Zhang(张富强)2, and Timothy C Steimle3
1 School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Linfen 041004, China;
2 School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Linfen 041004, China;
3 School of Molecular Science, Arizona State University, Tempe 85287, USA
Abstract  As a model molecule of actinide chemistry, UO molecule plays an important role in understanding the electronic structure and chemical bonding of actinide-containing species. We report a study of the laser-induced fluorescence spectra of the U16O and U18O using two-dimensional spectroscopy. Several rotationally resolved excitation spectra were investigated. Accurate molecular rotational constants and equilibrium internuclear distances were reported. Low-lying electronic states information was extracted from high resolution dispersed fluorescence spectra and analyzed by the ligand field theory model. The configuration of the ground state was determined as U2+(5f37s)O2-. The branching ratios, and the vibrational harmonic and anharmonic parameters were also obtained. Radiative lifetimes were determined by recording the time-resolved fluorescence spectroscopy. Transition dipole moments were calculated using the branching ratios and the radiative lifetimes. These findings were elucidated by using quantum-chemical calculations, and the chemical bonding was also analyzed. The findings presented in this work will enrich our understanding of actinide-containing molecules.
Keywords:  laser-induced fluorescence      two-dimensional spectroscopy      density functional theory  
Received:  19 September 2021      Revised:  07 December 2021      Accepted manuscript online: 
PACS:  33.20.-t (Molecular spectra) (Electronic structure and bonding characteristics)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.21903050).
Corresponding Authors:  Xi-Lin Bai,     E-mail:
About author:  2021-12-16

Cite this article: 

Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide 2022 Chin. Phys. B 31 053301

[1] Yasuoka H, Koutroulakis G, Chudo H, Richmond S, Veirs D K, Smith A I, Bauer E D, Thompson J D, Jarvinen G D and Clark D L 2012 Science 336 901
[2] Petrović J, Göök A and Cederwall B 2021 Sci. Adv. 7 eabg3032
[3] Herzberg R D, Greenlees P T, Butler P A, et al. 2006 Nature 442 896
[4] Burns P C, Ewing R C and Navrotsky A 2012 Science. 335 1184
[5] Kovács A, Konings R J M, Gibson J K, Infante I and Gagliardi L 2015 Chem. Rev. 115 1725
[6] Lei S Y, Zhong J, Zhou D L, Zhu F Y and Deng C X 2017 Chin. Phys. B 26 117001
[7] Urban M, Noga J, Cole S J and Bartlett R J 1985 J. Chem. Phys. 83 4041
[8] Parlinski K and Piekarz P 2021 J. Raman Spectrosc. 52 1346
[9] Malyshev A V., Glazov D A, Kozhedub Y S, Anisimova I S, Kaygorodov M Y, Shabaev V M and Tupitsyn I I 2021 Phys. Rev. Lett. 126 183001
[10] Tong Y X, Zhang Q H and Gu L 2018 Chin. Phys. B 27 066107
[11] Pluengphon P, Tsuppayakorn-aek P, Inceesungvorn B, Pinsook U and Bovornratanaraks T 2021 Mater. Chem. Phys. 267 124708
[12] Zhang L, Zou W, Yu Y, Zhao D, Ma X and Yang J 2021 J. Quantum Spectrosc. Radiat. Transfer 269 107690
[13] Gabelnick S D, Reedy G T and Chasanov M G 1973 J. Chem. Phys. 58 4468
[14] Green D W, Reedy G T and Gabelnick S D 1980 J. Chem. Phys. 73 4207
[15] Czekner J, Lopez G V and Wang L S 2014 J. Chem. Phys. 141 244302
[16] Yun Y, Legut D and Oppeneer P M 2012 J. Nucl. Mater. 426 109
[17] Hunt R D and Andrews L 1993 J. Chem. Phys. 98 3690
[18] Elorrieta J M, Bonales L J, Baonza V G and Cobos J 2018 J. Nucl. Mater. 503 191
[19] Kaledin L A, Mccord J E and Heaven M C 1994 J. Mol. Spectrosc. 164 27
[20] Heaven M C, Goncharov V, Steimle T C, Ma T and Linton C 2006 J. Chem. Phys. 125 204314
[21] Gascooke J R, Alexander U N and Lawrance W D 2011 J. Chem. Phys. 134 184301
[22] Gascooke J R and Lawrance W D 2013 Chem. Phys. Lett. 555 38
[23] Gascooke J R, Alexander U N and Lawrance W D 2012 J. Chem. Phys. 136 134309
[24] Reilly N J, Schmidt T W and Kable S H 2006 J. Phys. Chem. A 110 12355
[25] Bai X L and Steimle T C 2020 Astrophys. J. 889 147
[26] Kokkin D L, Steimle T C and Demille D 2014 Phys. Rev. A 90 062503
[27] Mandal P K, Das R C, Seema A U, Sahoo A C, Shah M L, Pulhani A K, Manohar K G and Dev V 2014 Appl. Phys. B 116 407
[28] Sanli A, Pan X, Beecher D S, Magnier S, Lyyra A M and Ahmed E H 2019 J. Mol. Spectrosc. 355 1
[29] Bouchard J L, Steimle T C, Kokkin D L, Sharfi D J and Mawhorter R J 2016 J. Mol. Spectrosc. 325 1
[30] Li P, Jia T T, Gao T and Li G 2012 Chin. Phys. B 21 043301
[31] Mulliken R S 1962 J. Chem. Phys. 36 3428
[32] Reed A E, Curtiss L A and Weinhold F 1988 Chem. Rev. 88 899
[33] Lia Fonseca Guerra C, Handgraaf J, Jan Baerends E and Matthias Bickelhaupt F 2004 J. Comput. Chem. 25 189
[34] Hirshfeld F L 1977 Theor. Chim. Acta 44 129
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Skripnikov L V and Titov A V 2015 J. Chem. Phys. 142 024301
[37] Stephens P J, Devlin F J, Chabalowski C F and Frisch M J 1994 J. Phys. Chem. 98 11623
[38] Becke A D 1993 J. Chem. Phys. 98 5648
[39] Van Lenthe E and Baerends E J 2003 J. Comput. Chem. 24 1142
[40] Velde G T, Bickelhaupt F M, Baerends E J, Guerra C F, Snijders J G and Ziegler T 2001 J. Comput. Chem. 22 931
[41] Li Y L, Zou J H, Xiong X G, Su J, Xie H, Fei Z J, Tang Z C and Liu H T 2017 J. Phys. Chem. A 121 2108
[42] Laatiaoui M, Lauth W, Backe H, et al. 2016 Nature 538 495
[43] Zhou M F, Andrews L, Ismail N and Marsden C 2000 J. Phys. Chem. A 104 5495
[44] Heaven M C, Nicolai J P, Riley S J and Parks E K 1985 Chem. Phys. Lett. 119 229
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[14] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!