Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 038201    DOI: 10.1088/1674-1056/ac29ad
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism

Hong-Bin Zhan(战鸿彬)1, Heng-Wei Zhang(张恒炜)1, Jun-Jie Jiang(江俊杰)1, Yi Wang(王一)1,†, Xu Fei(费旭)2, and Jing Tian(田晶)1
1 School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
2 Laboratory Analyst of Network Information Center, Dalian Polytechnic University, Dalian 116034, China
Abstract  The fluorescence mechanism of HBT-HBZ is investigated in this work. A fluorescent probe is used to detect HClO content in living cells and tap water, and its structure after oxidation by HClO (HBT-ClO) is discussed based on the density functional theory (DFT) and time-dependent density functional theory (TDDFT). At the same time, the influence of the probe conformation and the proton transfer site within the excited state molecule on the fluorescence mechanism are revealed. Combined with infrared vibrational spectra and atoms-in-molecules theory, the strength of intramolecular hydrogen bonds in HBT-HBZ and HBT-ClO and their isomers are demonstrated qualitatively. The relationship between the strength of intramolecular hydrogen bonds and dipole moments is discussed. The potential energy curves demonstrate the feasibility of intramolecular proton transfer. The weak fluorescence phenomenon of HBT-HBZ in solution is quantitatively explained by analyzing the frontier molecular orbital and hole electron caused by charge separation. Moreover, when strong cyan fluorescence occurs in solution, the corresponding molecular structure should be HBT-ClO(T). The influence of the intramolecular hydrogen bond formation site on the molecule as a whole is also investigated by electrostatic potential analysis.
Keywords:  benzothiazole      excited state intramolecular proton transfer      fluorescence mechanism      density functional theory  
Received:  23 July 2021      Revised:  22 August 2021      Accepted manuscript online:  24 September 2021
PACS:  82.39.Jn (Charge (electron, proton) transfer in biological systems)  
  31.15.ee (Time-dependent density functional theory)  
  87.15.A- (Theory, modeling, and computer simulation)  
Fund: Project supported by the Open Project of State Key Laboratory of Molecular Reaction Dynamics in Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences.
Corresponding Authors:  Yi Wang     E-mail:  wangyi@dlpu.edu.cn

Cite this article: 

Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶) Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism 2022 Chin. Phys. B 31 038201

[1] Henrique de Araujo T, Okada S S, Ghosn E E B, Taniwaki N N, Rodrigues M R, Rogerio de Almeida S, Mortara R A, Russo M, Campa A and Albuquerque R C 2013 Cell. Immunol. 281 27
[2] Sugiyama S, Okada Y, Sukhova G K, Virmani R, Heinecke J W and Libby P 2001 Am. J. Pathol. 158 879
[3] Steinbeck M J, Nesti L J, Sharkey P F and Parvizi J 2007 J. Orthop. Res. 25 1128
[4] Güngör N, Knaapen A M, Munnia A, Peluso M, Haenen G R, Chiu R K, Godschalk R W L and van Schooten F J 2010 Mutagenesis 25 149
[5] Yap Y W, Whiteman M and Cheung N S 2007 Cell Signal. 19 219
[6] Duan C, Won M, V erwilst P, Xu J C, Kim H S, Zeng L T and Kim J S 2019 Anal. Chem. 91 4172
[7] Zhu L M, Xu J C, Sun Z, Fu B Q, Qin C Q, Zeng L T and Hu X C 2015 Chem. Commun. 51 1154
[8] Huang Y F, Zhang Y B, Huo F J, Liu Y M and Yin C X 2020 Dyes Pigm. 179 108387
[9] Yuan L, Wang L, Agrawalla B K, Park S J, Zhu H, B Sivaraman, Peng J, Xu Q H and Chang Y T 2015 J. Am. Chem. Soc. 137 5930
[10] Wu L, Wu I C, DuFort C C, Carlson M A, Wu X, Chen L, Kuo C T, Qin Y, Yu J, Hingorani S R and Chiu D T 2017 J. Am. Chem. Soc. 139 6911
[11] Li Y A, Yang S, Li Q Y, Ma J P, Zhang S and Dong Y B 2017 Inorg. Chem. 56 13241
[12] Song X, Dong B, X Kong, Wang C, Zhang N and Lin W 2018 Spectrochim. Acta Part A 188 394
[13] Wen H, Huang Q, Yang X F and Li H 2013 Chem. Commun. 49 4956
[14] Majumdar P and Zhao J 2015 J. Phys. Chem. B 119 2384
[15] Wang J, Liu X and Pang Y 2014 J. Mater. Chem. B 2 6634
[16] Xu P F, Liu M H, Gao T, Zhang H L, Li Z W, Huang X Y and Zeng W B 2015 Tetrahedron. Lett. 56 4007
[17] Goswami S, Manna A, Paul S, Das A K, Nandi P K, Maity A K and Saha P 2014 Tetrahedron Lett. 55 490
[18] Chang C C, Wang F, Qiang J, Zhang Z J, Chen Y H, Zhang W, Wang Y and Chen X Q 2017 Sens. Actuators B Chem. 243 22
[19] Yang Y, Qiu F Z, Wang Y Z, Feng Y, Song X R, Tang X L, Zhang G L and W S 2018 Sens. Actuators B Chem. 260 832
[20] Wang J Y, Qu J B, Zhang H T, Wei K and Ni S X 2019 RSC Adv. 9 16467
[21] Nguyen K H, Hao Y, Zeng K, Fan S N, Li F, Yuan S, Ding X J, Xu M T and Liu Y N 2018 Spectrochim. Acta Part A 199 189
[22] He Y H, Xu Y, Shang Y T, Zheng S W, Chen W H and Pang Y 2018 Anal. Bioanal. Chem. 410 7007
[23] Tang L J, Zhou L, Yan X M, Zhong K L, Gao X, Liu X Y and Li J R 2020 Dyes Pigm. 182 108644
[24] Zhao J Z, Ji S M, Chen Y H, Guo H M and Yang, P 2012 Phys. Chem. Chem. Phys. 14 8803
[25] Zhou P W, Hoffmann M R, Han K L and He G Z 2015 J. Phys. Chem. B 119 2125
[26] Hu R, Feng J, Hu D H, Wang S Q, Li S Y, Li Y and Yang G Q 2010 Angew. Chem. Int. Ed. 49 4915
[27] Liu B, Wang H, Wang T S, Bao Y Y, Du F F, Tian J, Li Q B and Bai R K 2012 Chem. Commun. 48 2867
[28] Murale D P, Kim H, Choi W S and Churchill D G 2013 Org. Lett. 15 3946
[29] Xu Z, Xu L, Zhou J, Xu Y F, Zhu W P and Qian X H 2012 Chem. Commun. 48 10871
[30] Zhou P W and Han K L 2018 Acc. Chem. Res. 51 1681
[31] Tang Z, Yang Y F, Yang Y, Wang Y, Tian J and Fei X 2018 J. Lumin. 194 785
[32] Tang Z, Lu, M H, Liu K J, Zhao, Y L, Qi Y T, Wang Y, Zhang P and Zhou P W 2018 J. Photoch. Photobio. A 367 261
[33] Tang Z, Wei H W and Zhou P W 2020 J. Mol. Liq. 301 112415
[34] Zhan H B, Tang Z, Li Z X, Chen X Y, Tian J, Fei X and Wang Y 2021 Spectrochim. Acta Part A 260 119993
[35] Zhao J F and Jin B 2021 J. Mol. Liq. 326 115309
[36] Tao Y P, Han L G, Han Y X and Liu Z J 2016 J. Mol. Struct. 1121 188
[37] Hanaoka K, Kikuchi K, Kojima H, Urano Y and Nagano T 2004 J. Am. Chem. Soc. 126 12470
[38] Wang K J, Xi D Z, Liu C T, Chen Y H, Gu H, Jiang L, Chen X Q and Wang F 2020 Chin. Chem. Lett. 31 2955
[39] Yang X L, He L W, Xu K X, Yang Y Z and Lin W Y 2018 New. J. Chem. 42 12361
[40] Chen W, Yang M, Luo N, Wang F, Yu R Q and Jiang J H 2019 Analyst 144 6922
[41] Li N N, Bi C F, Zhang X, Xu C G, Fan C B, Gao W S, Zong Z A, Zuo S S, Niu C F and Fan Y H 2020 J. Photoch. Photobio. A 390 112299
[42] Wang, C Y, Xu J H, Ma Q J, Bai Y, Tian M J, Sun J G and Zhang Z J 2020 Spectrochim. Acta Part A 227 117579
[43] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Revision C.01 (Gaussian, Inc., Wallingford)
[44] Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett. 393 51
[45] Schafer A, Horn H and Ahlrichs R 1992 J. Chem. Phys. 97 2571
[46] Cances E, Mennucci B and Tomasi J 1997 J. Chem. Phys. 107 3032
[47] Cammi R and Tomasi J 1995 J. Comput. Chem. 16 1449
[48] Miertuš S, Scrocco E and Tomasi J 1981 Chem. Phys. 55 117
[49] Grimmea S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[50] Lu T and Chen F W 2012 J. Comput. Chem. 33 580
[51] Liu Z Y, Lu T and Chen Q X 2020 Carbon 165 461
[52] Lu T, TST calculator, http://sobereva.com/310 (accessed 8 17, 2021)
[53] Fernández-Ramos A, Ellingson B A, Meana-Pañeda R, Marques J M C and Truhlar D G 2007 Theor. Chem. Account. 118 813
[54] Emamian S, Lu T, Kruse H and Emamian H 2019 J. Comput. Chem. 40 2868
[55] Tang W, Sanville E and Henkelman G 2009 J. Phys.:Condens. Matter 21 084204
[56] Yang Y F, Luo X, Ma F C and Li Y Q 2021 Spectrochim. Acta Part A 250 119375
[57] Hunt P A, Kirchner B and Welton T 2006 Chem. Eur. J. 12 6762
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!