Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 058502    DOI: 10.1088/1674-1056/21/5/058502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of microwave pulse-width damage on a bipolar transistor

Ma Zhen-Yang(马振洋), Chai Chang-Chun(柴常春), Ren Xing-Rong(任兴荣), Yang Yin-Tang(杨银堂), Chen Bin(陈斌), and Zhao Ying-Bo(赵颖博)
School of Microelectronics, Xidian University, Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, Xi'an 710071, China
Abstract  This paper presents a theoretical study of the pulse-width effects on the damage process of a typical bipolar transistor caused by high power microwaves (HPMs) through the injection approach. The dependences of the microwave damage power, P, and the absorbed energy, E, required to cause the device failure on the pulse width $\tau$ are obtained in the nanosecond region by utilizing the curve fitting method. A comparison of the microwave pulse damage data and the existing dc pulse damage data for the same transistor is carried out. By means of a two-dimensional simulator, ISE-TCAD, the internal damage processes of the device caused by microwave voltage signals and dc pulse voltage signals are analyzed comparatively. The simulation results suggest that the temperature-rising positions of the device induced by the microwaves in the negative and positive half periods are different, while only one hot spot exists under the injection of dc pulses. The results demonstrate that the microwave damage power threshold and the absorbed energy must exceed the dc pulse power threshold and the absorbed energy, respectively. The dc pulse damage data may be useful as a lower bound for microwave pulse damage data.
Keywords:  bipolar transistor      high power microwave      pulse width effects  
Received:  01 November 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  85.30.Pq (Bipolar transistors)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60776034).

Cite this article: 

Ma Zhen-Yang(马振洋), Chai Chang-Chun(柴常春), Ren Xing-Rong(任兴荣), Yang Yin-Tang(杨银堂), Chen Bin(陈斌), and Zhao Ying-Bo(赵颖博) Effects of microwave pulse-width damage on a bipolar transistor 2012 Chin. Phys. B 21 058502

[1] Backstrom M G and Lovstrand K G 2004 IEEE Trans. Electromagn. Compat. 46 396
[2] Mansson D, Thottappillil R, Nilsson T, Lunden O and Backstrom M 2008 IEEE Trans. Electromagn. Compat. 50 434
[3] Sabath F 2008 Poceedings of the 29th General Assembly of the URSI August 7--16, 2008 Chicago, USA
[4] Sabath F, Backstrom M, Nordstrom B, Serafin D, Kaiser A, Kerr B A and Nitsch D 2004 IEEE Trans. Electromagn. Compat. 46 329
[5] Radasky W A, Baum C E and Wik M W 2004 IEEE Trans. Electromagn. Compat. 46 314
[6] Fan J P, Zhang L and Jia X Z 2010 High Power Laser Part. Beams 22 1319
[7] Hwang S M, Hong J I and Huh C S 2008 Prog. Electromagn. Res. 81 61
[8] Camp M and Garbe H 2006 IEEE Trans. Electromagn. Compat. 48 829
[9] Prather W D, Baum C E, Torres R J, Sabath F and Nitsch D 2004 IEEE Trans. Electromagn. Compat. 46 335
[10] Mansson D, Thottappillil R, Backstrom M and Lunden O 2008 IEEE Trans. Electromagn. Compat. 50 101
[11] Kim K and Iliadis A A 2008 Solid-State Electron. 52 1589
[12] Fang J Y, Shen J A, Yang Z Q and Qiao D J 2003 High Power Laser Part. Beams 6 591
[13] Brown W D 1972 IEEE Trans. Nucl. Sci. 19 68
[14] Wunsch D C and Bell R R 1968 IEEE Trans. Nucl. Sci. 15 244
[15] Xi X W, Chai C C, Reng X R, Yang Y T, Zhang B and Hong X 2010 J. Semicond. 31 32
[16] Xi X W, Chai C C, Ren X R, Yang Y T, Ma Z Y and Wang J 2010 J. Semicond. 31 49
[17] Chai C C, Xi X W, Reng X R, Yang Y T and Ma Z Y 2010 Acta Phys. Sin. 11 8118 (in Chinese)
[18] Tasca D M 1970 IEEE Trans. Nucl. Sci. 17 364
[19] Integrated Systems Engineering Corp. 2004 ISE-TCAD Dessis Simulation User's Manual, Zurich, Switzerland, 2004 p. 142
[20] Zhang B, Chai C C and Yang Y T 2010 Acta Phys. Sin. 11 8063 (in Chinese)
[21] Ma Z Y, Chai C C, Ren X R, Yang Y T and Chen B 2012 Acta Phys. Sin. 7 078501 (in Chinese)
[22] Xu T, Chen X and Du Z W 2010 Asia-Pacific Symposium on Electromagnetic Compatibility, April 12--16, 2010 p. 401
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[4] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[5] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[8] Snapback-free shorted anode LIGBT with controlled anode barrier and resistance
Shun Li(李顺), Jin-Sha Zhang(张金沙), Wei-Zhong Chen(陈伟中), Yao Huang(黄垚), Li-Jun He(贺利军), and Yi Huang(黄义). Chin. Phys. B, 2021, 30(2): 028501.
[9] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[10] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[11] Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout
Rui Chen(陈蕊), Dong-Yue Jin(金冬月), Wan-Rong Zhang(张万荣), Li-Fan Wang(王利凡), Bin Guo(郭斌), Hu Chen(陈虎), Ling-Han Yin(殷凌寒), Xiao-Xue Jia(贾晓雪). Chin. Phys. B, 2019, 28(9): 098502.
[12] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[13] Analysis of displacement damage effects on bipolar transistors irradiated by spallation neutrons
Yan Liu(刘岩), Wei Chen(陈伟), Chaohui He(贺朝会), Chunlei Su(苏春垒), Chenhui Wang(王晨辉), Xiaoming Jin(金晓明), Junlin Li(李俊霖), Yuanyuan Xue(薛院院). Chin. Phys. B, 2019, 28(6): 067302.
[14] Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension
Zheng-Xin Wen(温正欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Jun Chen(陈俊), Ya-Wei He(何亚伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2019, 28(6): 068504.
[15] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
No Suggested Reading articles found!