Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 118402    DOI: 10.1088/1674-1056/aba607
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A compact dual-band radiation system

Yuan-Qiang Yu(于元强)1, Yu-Wei Fan(樊玉伟)2, †, and Xiao-Yu Wang(王晓玉)2$
1 Air Early Warning Academy, Wuhan 430014, China
2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Abstract  

Complex magnetically insulated transmission line oscillator (MILO), as an important development direction, can enhance the power efficiency and generate dual-band high power microwaves (HPMs). A complex MILO and a preliminary dual-band radiation system have been proposed in our previous studies. However, the axial length of the dual-band radiation system is too long to meet the compact requirements. In this paper, a compact dual-band radiation system is presented and investigated numerically. The compact dual-band radiation system comprises a dual-band cross-shaped mode converter and a dual-band coaxial conical horn antenna. It can convert two coaxial TEM mode microwaves (1.717 GHz and 4.167 GHz) generated by the complex MILO into the coaxial TE11 mode microwaves, and then radiate them into the air. At 1.717 GHz, the gain of the antenna is 17.9 dB, and the total return loss and diffraction loss are 1.50% and 0, respectively. At 4.167 GHz, the gain is 19.4 dB, and the total return loss and diffraction loss are 1.17% and 0.78%, respectively. The power handling capacity of the antenna is 5.1 GW at 1.717 GHz and 2.0 GW at 4.167 GHz. Comparing with the original structure, the length of the dual-band radiation system is reduced by 45.2%.

Keywords:  dual-band      mode conversion antenna      high power microwave (HPM)  
Received:  06 May 2020      Revised:  19 June 2020      Accepted manuscript online:  15 July 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 61671457 and 61871390).
Corresponding Authors:  Corresponding author. E-mail: fyw9108212@126.com   

Cite this article: 

Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$ A compact dual-band radiation system 2020 Chin. Phys. B 29 118402

Fig. 1.  

Preliminary dual-band radiation system.

Fig. 2.  

Structure of compact dual-band radiation system.

Fig. 3.  

Electric field distribution at (a) 1.717 GHz and (b) 4.167 GHz in dual-band mode converter.

Fig. 4.  

Mode power fraction of mode converter at (a) 1.717 GHz and (b) 4.167 GHz.

Fig. 5.  

Radiation patterns at (a) 1.717 GHz and (b) 4.167 GHz of dual-band radiation system.

Fig. 6.  

Rreturn loss and diffraction loss at (a) 1.717 GHz and (b) 4.167 GHz of dual-band radiation system.

Fig. 7.  

Schematic diagram of E-plane position of the dual-band radiation system.

Fig. 8.  

Electric field at (a) 1.717 GHz and (b) 4.167 GHz of E-plane in dual-band radiation system.

[1]
Calico S E, Clark M C, Lemke R W, Scott M C 1995 SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation July 9–14, 1995 San Diego, CA, USA 50 DOI: 10.1117/12.218591
[2]
Haworth M D, Cartwright K L, Luginsland J W, Shiffler D A, Umstattd R J 2002 IEEE Trans. Plasma Sci. 30 992 DOI: 10.1109/TPS.2002.801550
[3]
Lemke R W, Calico S E, Clark M C 1997 IEEE Trans. Plasma Sci. 25 364 DOI: 10.1109/27.602513
[4]
Fan Y W, Wang X Y, Zhong H H, Zhang J D 2015 Appl. Phys. Lett. 106 093501 DOI: 10.1063/1.4913932
[5]
Fan Y W, Wang X Y, Zhang Z C, Xun T, Yang H W 2016 Vacuum 128 39 DOI: 10.1016/j.vacuum.2016.03.006
[6]
Fan Y W, Zhong H H, Li Z Q, Shu T, Yang H W, Yang J H, Wang Y, Luo L, Zhao Y S 2008 Chin. Phys. B 17 1804 DOI: 10.1088/1674-1056/17/5/042
[7]
Haworth M D, Allen K E, Baca G, Benford J N, Englert T J, Hackett K E, Hendricks K J, Henley D M, Lemke R W, Price D, Ralph D R, Sena M D, Shiffler D A, Spencer T A 1997 Optical Science, Engineering and Instrumentation ’97, July 27–August 1,1997 San Diego, CA, USA 28 DOI: 10.1117/12.279433
[8]
Haworth M D, Baca G, Benford J, Englert T, Hackett K, Hendricks K J, Henley D, LaCour M, Lemke R W, Price D, Ralph D, Sena M, Shiffler D, Spencer T A 1998 IEEE Trans. Plasma Sci. 26 312 DOI: 10.1109/27.700759
[9]
Haworth M D, Englert T J, Hendricks K J, Lemke R W, Luginsland J W, Shiffler D S, Spencer T A 2000 Rev. Sci. Instrum. 71 1539 DOI: 10.1063/1.1150500
[10]
Fan Y W, Zhong H H, Li Z Q, Shu T, Zhang J D, Zhang J, Zhang X P, Yang J H, Zhang J, Luo L 2007 J. Appl. Phys. 102 103304 DOI: 10.1063/1.2817254
[11]
Fan Y W, Zhong H H, Shu T, Li Z Q 2008 Phys. Plasmas 15 083108 DOI: 10.1063/1.2976168
[12]
Ju J C, Fan Y W, Zhong H H, Shu T 2009 IEEE Trans. Plasma Sci. 37 2041 DOI: 10.1109/TPS.2009.2027603
[13]
Fan Y W, Zhong H H, Li Z Q, Yuan C W, Shu T, Yang H W, Wang Y, Luo L 2011 IEEE Trans. Plasma Sci. 39 540 DOI: 10.1109/TPS.2010.2086492
[14]
Fan Y W, Wang X Y, Liang H, Zhong H H, Zhang J D 2015 Chin. Phys. B 24 035203 DOI: 10.1088/1674-1056/24/3/035203
[15]
Fan Y W, Wang X Y, Li G L, Yang H W, Zhong H H, Zhang J D 2016 IEEE Trans. Electron Dev. 63 1307 DOI: 10.1109/TED.2016.2518744
[16]
Fan Y W, Zhong H H, Zhang J D, Shu T 2014 Rev. Sci. Instrum. 85 053512 DOI: 10.1063/1.4876599
[17]
Yu Y Q, Wang X Y, Fan Y W, Li A K, Li S R 2018 AIP Advances 8 055212 DOI: 10.1063/1.5027116
[18]
Wang X Y, Fan Y W, Shu T, Yuan C Y, Zhang Q 2018 Chin. Phys. B 27 068401 DOI: 10.1088/1674-1056/27/6/068401
[19]
Yuan C Y, Fan Y W, Zhong H H, Liu Q X, Qian B L 2006 IEEE Trans. Anten. Propag. 54 3022 DOI: 10.1109/TAP.2006.882199
[20]
Baker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies New York Wiley-IEEE Press Chapter 10
[1] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[2] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[3] Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application
Qi Li(李琦), Bing-qiang Yu(于兵强), Zhao-feng Li(李兆峰), Xiao-feng Wang(王晓峰), Zi-chen Zhang(张紫辰), Ling-feng Pan(潘岭峰). Chin. Phys. B, 2017, 26(8): 085202.
[4] Electromagnetic coupling reduction in dual-band microstrip antenna array using ultra-compact single-negative electric metamaterials for MIMO application
Xiao-Long Fu(付孝龙), Guo-Cheng Wu(吴国成), Wei-Xiong Bai(白渭雄), Guang-Ming Wang(王光明), Jian-Gang Liang(梁建刚). Chin. Phys. B, 2017, 26(2): 024101.
[5] Compact superconducting single-and dual-band filter design using multimode stepped-impedance resonator
Xiang Wang(王翔), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(12): 128501.
[6] Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots
Qi Li-Mei (亓丽梅), Li Chao (李超), Fang Guang-You (方广有), Li Shi-Chao (李士超). Chin. Phys. B, 2015, 24(10): 107802.
[7] Dual-band frequency selective surface with large band separation and stable performance
Zhou Hang(周航), Qu Shao-Bo(屈绍波), Peng Wei-Dong(彭卫东), Lin Bao-Qin(林宝勤), Wang Jia-Fu(王甲富), Ma Hua(马华), Zhang Jie-Qiu(张介秋), Bai Peng(柏鹏), Wang Xu-Hua(王徐华), and Xu Zhuo(徐卓) . Chin. Phys. B, 2012, 21(5): 054101.
[8] Dual-band frequency selective surface with quasi-elliptic bandpass response
Zhou Hang(周航), Qu Shao-Bo(屈绍波), Peng Wei-Dong(彭卫东), Wang Jia-Fu(王甲富), Ma Hua(马华), Zhang Jie-Qiu(张介秋), Bai Peng(柏鹏), and Xu Zhuo(徐卓) . Chin. Phys. B, 2012, 21(3): 030301.
No Suggested Reading articles found!