Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 098502    DOI: 10.1088/1674-1056/ab3436
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout

Rui Chen(陈蕊), Dong-Yue Jin(金冬月), Wan-Rong Zhang(张万荣), Li-Fan Wang(王利凡), Bin Guo(郭斌), Hu Chen(陈虎), Ling-Han Yin(殷凌寒), Xiao-Xue Jia(贾晓雪)
Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
Abstract  

Based on the thermal network of the two-dimensional heterojunction bipolar transistors (HBTs) array, the thermal resistance matrix is presented, including the self-heating thermal resistance and thermal coupling resistance to describe the self-heating and thermal coupling effects, respectively. For HBT cells along the emitter length direction, the thermal coupling resistance is far smaller than the self-heating thermal resistance, and the peak junction temperature is mainly determined by the self-heating thermal resistance. However, the thermal coupling resistance is in the same order with the self-heating thermal resistance for HBT cells along the emitter width direction. Furthermore, the dependence of the thermal resistance matrix on cell spacing along the emitter length direction and cell spacing along the emitter width direction is also investigated, respectively. It is shown that the moderate increase of cell spacings along the emitter length direction and the emitter width direction could effectively lower the self-heating thermal resistance and thermal coupling resistance, and hence the peak junction temperature is decreased, which sheds light on adopting a two-dimensional non-uniform cell spacing layout to improve the uneven temperature distribution. By taking a 2×6 HBTs array for example, a two-dimensional non-uniform cell spacing layout is designed, which can effectively lower the peak junction temperature and reduce the non-uniformity of the dissipated power. For the HBTs array with optimized layout, the high power-handling capability and thermal dissipation capability are kept when the bias voltage increases.

Keywords:  heterojunction bipolar transistors (HBTs) array      thermal effects      thermal resistance matrix      thermal design  
Received:  11 March 2019      Revised:  26 June 2019      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.80.Fi (Thermoelectric devices)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61006059 and 61774012), Beijing Municipal Natural Science Foundation, China (Grant No. 4143059), Beijing Municipal Education Committee, China (Grant No. KM201710005027), Postdoctoral Science Foundation of Beijing, China (Grant No. 2015ZZ-11), China Postdoctoral Science Foundation (Grant No. 2015M580951), and Scientific Research Foundation Project of Beijing Future Chip Technology Innovation Center, China (Grant No. KYJJ2016008).

Corresponding Authors:  Dong-Yue Jin     E-mail:  dyjin@bjut.edu.cn

Cite this article: 

Rui Chen(陈蕊), Dong-Yue Jin(金冬月), Wan-Rong Zhang(张万荣), Li-Fan Wang(王利凡), Bin Guo(郭斌), Hu Chen(陈虎), Ling-Han Yin(殷凌寒), Xiao-Xue Jia(贾晓雪) Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout 2019 Chin. Phys. B 28 098502

[1] Hadi R A, Grzyb J, Heinemann B and Pfeiffer R 2013 IEEE J. Solid-state Circuits 48 2002
[2] Metzger A G, D'Alessandro V, Rinaldi N and Zampardi P J 2013 Microelectron. Reliab. 53 1471
[3] Hettrich H and Möller M 2016 IEEE J. Solid-state Circuits 51 2006
[4] Vincenzo D A, Antonio P C, Lorenzo C, Brian M and Peter J Z 2018 Proceedings of EuroSimE, Toulouse, France, p. 1
[5] Sun Y B, Fu J, Wang Y D, Zhou W, Zhang W and Liu Z H 2016 Chin. Phys. B 25 048501
[6] Fu Q, Zhang W R, Jin D Y, Zhao Y X and Wang X 2016 Chin. Phys. B 25 124401
[7] Sun Y B, Li X J, Zhang J Z and Shi Y L 2017 Chin. Phys. B 26 098502
[8] Liou L L, Bayraktaroglu B and Huang C I 1996 Solid-State Electron. 39 165
[9] Sevimli O, Parker A E, Fattorini A P and Mahon S J 2013 IEEE Trans. Electron. Devices 60 1632
[10] Koenig E, Seiler U, Schneider J, Erben U and Schumacher H 1995 Solid-State Electron. 38 775
[11] Jin D Y, Zhang W R, Shen P, Xie H Y, Li J, Gan J N, Huang L, Hu N and Huang Y W 2008 2008 International Conference on Microwave and Millimeter Wave Technology, April 21-24, 2008 Nanjing, China, p. 166
[12] McAlister S P, McKinnon W R, Kovacic S J and Lafontaine H 2004 Solid-State Electron. 48 2001
[13] Jin D Y, Zhang W R, Xie H Y, Chen L, Shen P and Hu N 2009 Microelectron. Reliab. 49 382
[14] Chen L, Zhang W R, Jin D Y, Shen P, Xie H Y, Ding C B, Xiao Y, Sun B T and Wang R Q 2011 Chin. Phys. B 20 018501
[15] Chen L, Zhang W R, Jin D Y, Xie H Y, Xiao Y, Wang R Q and Ding C B 2011 Acta Phys. Sin. 60 078501(in Chinese)
[16] Marano I, D'Alessandro V and Rinaldi N 2009 Solid-State Electron. 53 297
[17] Zhao X Y, Jin D Y, Zhang W R, Wang X, Guo Y L and Wang D 2016 5th International Symposium on Next-Generation Electronics, May 4-6, 2016 Taiwan, China, p. 1
[18] Jin D Y, Zhang W R, Chen L, Fu Q, Xiao Y, Wang R Q and Zhao X 2011 Chin. Phys. B 20 064401
[19] Lehmann S, Zimmermann Y, Pawlak A and Schröter M 2014 IEEE Trans. Electron. Devices 61 3676
[1] Non-thermal effects of 0.1 THz radiation on intestinal alkaline phosphatase activity and conformation
Xin-Xin Zhang(张欣欣), Ming-Xia He(何明霞), Yu Chen(陈宇), Cheng Li(李程), Jin-Wu Zhao(赵晋武), Peng-Fei Wang(王鹏騛), Xin Peng(彭鑫). Chin. Phys. B, 2019, 28(12): 128702.
[2] Design and performance of a composite Tm: YAG laser pumped by VBG-stabilized narrow-band laser diode
Shu-Tao Dai(戴殊韬), Jian-Hong Huang(黄见洪), Hai-Zhou Huang(黄海舟), Li-Xia Wu(吴丽霞), Jin-Hui Li(李锦辉), Jing Deng(邓晶), Yan Ge(葛燕), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2017, 26(7): 074211.
[3] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[4] Compact, temperature-stable multi-gigahertz passively modelocked semiconductor disk laser
Song Yan-Rong (宋晏蓉), Guoyu He-Yang (郭于鹤洋), Zhang Peng (张鹏), Tian Jin-Rong (田金荣). Chin. Phys. B, 2015, 24(8): 084208.
[5] Analytical model for thermal lensing and spherical aberration in diode side-pumped Nd:YAG laser rod having Gaussian pump profile
M H Moghtader Dindarlu, M Kavosh Tehrani, H Saghafifar, A Maleki. Chin. Phys. B, 2015, 24(12): 124205.
[6] Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors
Jin Dong-Yue(金冬月), Zhang Wan-Rong(张万荣), Chen Liang(陈亮), Fu Qiang(付强), Xiao Ying(肖盈), Wang Ren-Qing(王任卿), and Zhao Xin(赵昕). Chin. Phys. B, 2011, 20(6): 064401.
[7] Nonthermal effect of dilatonic black holes
Lü Jun-Li (吕君丽). Chin. Phys. B, 2005, 14(2): 263-267.
No Suggested Reading articles found!