Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057501    DOI: 10.1088/1674-1056/21/5/057501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The crystal structure, magnetism, and colossal magnetoresistance of Y2CrS4

Liu Rong-Deng(刘荣灯)a)b), Liu Yun-Tao(刘蕴韬)a), He Lun-Hua(何伦华)b), Wang Zhi-Cui(王志翠)b), Chen Dong-Feng(陈东风)a), and Wang Fang-Wei(王芳卫)b)†
a. China Institute of Atomic Energy, Beijing 102413, China;
b. State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Ternary yttrium chromium sulfide, Y2CrS4, prepared by the solid-state reaction of Y2S3, Cr, and S, was found to exhibit an antiferromagnetic transition at about 64 K. The X-ray diffraction pattern at 300 K was refined with space group Pca21, and the structure parameters were determined to be a=12.51 Å, b=7.53 Å, and c=12.49 Å. We investigated the magnetotransport properties, and observed negative colossal magnetoresistance reaching up to 2.5$\times$104% in the semiconducting compound of Y2CrS4.
Keywords:  magnetoresistance      crystal structure      magnetism  
Received:  05 January 2012      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  75.47.Gk (Colossal magnetoresistance)  
  61.50.-f (Structure of bulk crystals)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB833102) and the National Natural Science Foundation of China (Grant No. 10974244)

Cite this article: 

Liu Rong-Deng(刘荣灯), Liu Yun-Tao(刘蕴韬), He Lun-Hua(何伦华), Wang Zhi-Cui(王志翠), Chen Dong-Feng(陈东风), and Wang Fang-Wei(王芳卫) The crystal structure, magnetism, and colossal magnetoresistance of Y2CrS4 2012 Chin. Phys. B 21 057501

[1] Ramirez A P, Cava R J and Krajewski J 1997 Nature 386 156
[2] Alonso J A, Velasco P, Martinez-Lope M J, Casais M T, Martinez J L, Fernandez-Diaz M T and de Paoli J M 2000 Appl. Phys. Lett. 76 3274
[3] Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583
[4] Majumdar P and Littlewood P 1998 Phys. Rev. Lett. 81 1314
[5] Prasankumar R P, Okamura H, Imai H, Shimakawa Y, Kubo Y, Trugman SA, Taylor A J and Averitt R D 2005 Phys. Rev. Lett. 95 267404
[6] Millis A J, Shraiman B I and Mueller R 1996 Phys. Rev. Lett. 77 175
[7] Ramirez A P 1997 J. Phys.:Condens. Matter 9 8171
[8] Weber S, Lunkenheimer P, Fichtl R, Hemberger J, Tsurkan V and Loidl A 2006 Phys. Rev. Lett. 96 157202
[9] Ramirez A P and Subramanian M A 1997 Science 277 546
[10] Tezuka K, Shan Y J, Imoto H and Ohoyama K 2007 J. Phys. Chem. Solids 68 2133
[11] Vaqueiro P, Szkoda I, Sanchez R D and Powell A V 2009 Inorg. Chem. 48 1284
[12] Tomas A and Guittard M 1980 Mater. Res. Bull. 15 1547
[13] Rodríguez-Carvajal J 2001 FullProf 2000 (Version July2001), Laboratoire L閛n Brillouin (CEA-CNRS) France
[14] Tomas A, Chevalier R, Laruelle P and Bachet B 1976 Acta Crystallogr. B 32 3287
[15] Wang B T, Yin W, Li W D and Wang F 2011 Eur. Phys. J. B 80 307
[16] Wang J Y, Zhai W, Jin K X and Chen C L 2011 Chin. Phys. B 20 097202
[17] Yang F, Jin K J, Huang Y H, He M, L? H B and Yang G Z 2010 Chin. Phys. B 19 087301
[18] Wang M and Zhang N 2006 Chin. Phys. 15 850
[19] Sun C P, Huang C L, Lin C C, Her J L, Ho C J, Lin J Y, Berger H and Yang H D 2010 Appl. Phys. Lett. 96 122109
[20] Alonso J A, Martinez J L, Martinez-Lope M J, Casais M T and Fernandez-Diaz M T 1999 Phys. Rev. Lett. 82 189
[21] Cheong S W, Wang H Y, Batlogg B and Rupp L W 1996 Solid State Commun. 98 163
[22] Velasco P, Alonso J A, Martinez-Lope M J, Casais M T and Martinez J L 2002 J. Magn. Magn. Mater. 242 725
[23] Shimakawa Y, Kubo Y and Manako T 1996 Nature 379 53
[24] von Helmolt R, Wecker J, Holzapfel B, Schultz L and Samwer K 1993 Phys. Rev. Lett. 71 2331
[25] Yang Z R, Tan S, Chen Z W and Zhang Y H 2000 Phys. Rev. B 62 13872
[26] Yang Z R, Bao X Y, Tan S and Zhang Y H 2004 Phys. Rev. B 69 44407
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[5] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[6] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[7] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[8] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[9] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[10] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[11] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[12] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[13] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
No Suggested Reading articles found!