Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057402    DOI: 10.1088/1674-1056/21/5/057402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Interfacial spin Hall current in a Josephson junction with Rashba spin–orbit coupling

Yang Zhi-Hong(杨志红)a)b)†, Yang Yong-Hong(杨永宏)a), and Wang Jun(汪军) a)
a. Department of Physics, Southeast University, Nanjing 210096, China;
b. College of Science, Nanjing University of Post and Telecommuntion, Nanjing 210046, China
Abstract  We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin--orbit coupling considered in one of the superconducting leads. It is found that an angle-resolved spin supercurrent flows through the junction and a nonzero interfacial spin Hall current driven by the superconducting phase difference also appears at the interface. The physical origin of this is that the Rashba spin--orbit coupling can induce a triplet order parameter in the s-wave superconductor. The interfacial spin Hall current dependences on the system parameters are also discussed.
Keywords:  Josephson junction      spin Hall current      Rashba spin--orbit coupling      interfacial current  
Received:  09 October 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.25.-b (Spin polarized transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 110704032 and 110704033), the Natural Science Foundation of JiangSu Province, China (Grant No. BK2010416), and the National Basic Research Program of China (Grant No. 2009CB945504).

Cite this article: 

Yang Zhi-Hong(杨志红), Yang Yong-Hong(杨永宏), and Wang Jun(汪军) Interfacial spin Hall current in a Josephson junction with Rashba spin–orbit coupling 2012 Chin. Phys. B 21 057402

[1] Z黷ic J, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[3] Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin:Springer)
[4] Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
[5] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
[6] Yan Y Z, Li H W and Hu L B 2009 Chin. Phys. B 18 2981
[7] Li D F and Shi J R 2009 Chin. Phys. B 18 282
[8] Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
[9] Koga T, Nitta J, Akazaki T and Takayanagi H 2002 Phys. Rev. Lett. 89 046801
[10] Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
[11] Mal'shukov A G and Chu C S 2008 Phys. Rev. B 78 104503
[12] Mal'shukov A G and Chu C S 2011 Phys. Rev. B 84 054520
[13] Tanaka Y, Yokoyama Y, Balatsky A V and Nagaosa N 2009 Phys. Rev. B 79 060505R
[14] Sato M 2006 Phys. Rev. B 73 214502
[15] Sato M and Fujimoto S 2009 Phys. Rev. B 79 094504
[16] Fujimoto S 2007 J. Phys. Soc. Jpn. 76 051008
[17] Frigeri P A, Agterberg D F, Koga A and Sigrist M 2004 Phys. Rev. Lett. 92 097001
[18] Frigeri P A, Agterberg D F and Sigrist M 2004 New J. Phys. 6 115
[19] Sau J D, Tewari S, Lutchyn R M, Stanescu T D and Sarma S D 2010 Phys. Rev. B 82 214509
[20] Sau J D, Lutchyn R M, Tewari S and Sarma S D 2010 Phys. Rev. B 82 094522
[21] Alicea J 2010 Phys. Rev. B 81 125318
[22] Wang J and Chan K S 2010 J. Phys.:Condens. Matter 22 225701
[23] Yang Z H, Wang J and Chan K S 2011 J. Phys.:Condens. Matter 23 085701
[24] Takehito Y 2011 arXiv:1107.4202v2
[25] Furusaki A and Tsukada M 1991 Sol. Sta. Com. 78 299
[26] Yokoyama T, Tanaka Y and Inoue J 2006 Phys. Rev. B 74 035318
[27] Yang Z H and Yang Z H 2010 Europhys. Lett. 92 17001
[28] Sengupta K and Yakovenko V M 2008 Phys. Rev. Lett. 101 187003
[29] Lu C K and Yip S 2009 Phys. Rev. B 80 024504
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[3] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[4] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[5] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[6] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[7] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[8] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[9] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[10] Quadruple-stacked Nb/NbxSi1-x/Nb Josephson junctions for large-scale array application
Wenhui Cao(曹文会), Jinjin Li(李劲劲), Lanruo Wang(王兰若), Yuan Zhong(钟源), Qing Zhong(钟青). Chin. Phys. B, 2020, 29(6): 067404.
[11] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[12] Simulation and measurement of millimeter-wave radiation from Josephson junction array
Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁). Chin. Phys. B, 2019, 28(6): 060305.
[13] Development of 0.5-V Josephson junction array devices for quantum voltage standards
Lanruo Wang(王兰若), Jinjin Li(李劲劲), Wenhui Cao(曹文会), Yuan Zhong(钟源), Zhonghua Zhang(张钟华). Chin. Phys. B, 2019, 28(6): 068501.
[14] Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation
Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力). Chin. Phys. B, 2019, 28(12): 127402.
[15] 0-π transition induced by the barrier strength in spin superconductor Josephson junctions
Wen Zeng(曾文), Rui Shen(沈瑞). Chin. Phys. B, 2018, 27(9): 097401.
No Suggested Reading articles found!