Growth and photoluminescence properties of inclined ZnO and ZnCoO thin films on SrTiO3(110) substrates
Bai Hong-Liang(白洪亮), Liu Guo-Lei(刘国磊)†, He Shu-Min(贺树敏), Yan Shi-Shen(颜世申), Zhu Da-Peng(朱大鹏), Guo Hong-Yu(郭红雨), Ji Zi-Wu(冀子武), Yang Feng-Fan(杨丰帆), Chen Yan-Xue(陈延学), and Mei Liang-Mo(梅良模)
School of Physics and National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract ZnO thin film growth prefers different orientations on the etched and unetched SrTiO3(STO)(110) substrates. Inclined ZnO and cobalt-doped ZnO (ZnCoO) thin films are grown on unetched STO(110) substrates using oxygen plasma assisted molecular beam epitaxy, with the c-axis 42° inclined from the normal STO(110) surface. The growth geometries are ZnCoO[100]//STO[10] and ZnCoO[11]//STO[001]. The low temperature photoluminescence spectra of the inclined ZnO and ZnCoO films are dominated by D0X emissions associated with A0X emissions, and the characteristic emissions for the 2E(2G)→4A2(4F) transition of Co2+ dopants and the relevant phonon-participated emissions are observed in the ZnCoO film, indicating the incorporation of Co2+ ions at the lattice positions of the Zn2+ ions. The c-axis inclined ZnCoO film shows ferromagnetic properties at room temperature.
(Methods of materials synthesis and materials processing)
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB929202) and the National Natural Science Foundation of China (Grant Nos. 10834001 and 51125004).
Cite this article:
Bai Hong-Liang(白洪亮), Liu Guo-Lei(刘国磊), He Shu-Min(贺树敏), Yan Shi-Shen(颜世申), Zhu Da-Peng(朱大鹏), Guo Hong-Yu(郭红雨), Ji Zi-Wu(冀子武), Yang Feng-Fan(杨丰帆), Chen Yan-Xue(陈延学), and Mei Liang-Mo(梅良模) Growth and photoluminescence properties of inclined ZnO and ZnCoO thin films on SrTiO3(110) substrates 2012 Chin. Phys. B 21 057801
[1]
Cheng X L, Zhao H, Huo L H, Gao S and Zhao J G 2004 Sensor Actuat. B-Chem. 102 248
[2]
Manna U, Yoo J, Dhungel S K, Gowtham M, Gangopadhyay U, Kim K, Yi J and Saha H 2005 J. Korean Phys. Soc. 46 1378
[3]
Yan Z, Song Z, Liu W, Ren H, Gu N, Zhou X, Zhang L, Wang Y, Feng S, Lai L and Chen J 2007 Appl. Surf. Sci. 253 9372
[4]
Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nat. Mater. 4 42
[5]
Su S C, Lu Y M and Mei T 2011 Acta Phys. Sin. 60 096801 (in Chinese)
[6]
Li M, Zhang H Y, Guo C X, Xu J B, Fu X J and Chen P F 2009 Chin. Phys. B 18 5020
[7]
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[8]
Ohno H 1998 Science 281 951
[9]
Wetzel C, Takeuchi T, Amano H and Akasaki I 2000 Phys. Rev. B 62 R13302
[10]
Park S H and Ahn D 2005 Appl. Phys. Lett. 87 253509
[11]
Wei X H, Li Y R, Zhu J, Huang W, Zhang Y, Luo W B and Ji H 2007 Appl. Phys. Lett. 90 151918
[12]
Zhang Y, Li X, Yu W, Yang C, Cao X, Gao X, Kong J, Shen W, Zhao J and Sun X 2009 J. Phys. D. Appl. Phys. 42 075410
[13]
Wang J S and Lakin K M 1983 Appl. Phys. Lett. 42 352
[14]
Peruzzi M, Pedarnig J D, Böauerle D, Schwinger W and Schöaffler F 2004 Appl. Phys. A 79 1873
[15]
Lee Y E, Kim S G, Kim Y J and Kim H J 1997 J. Vac. Sci. Technol. A 15 1194
[16]
Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhes S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Le Fevre P, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthelemy A and Rozenberg M J 2011 Nature 469 189
[17]
Sugiura M, Nakashima Y, Nakasaka T and Kobayashi T 2002 Appl. Surf. Sci. 197 472
[18]
Kim D W, Shin S, Kim Y, Chang S H, Chang Y J, Kim M and Jeong H 2007 Solid State Commun. 143 140
[19]
Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M and Koinuma H 1994 Science 266 1540
[20]
Nam Y S, Lee S W, Baek K S, Chang S K, Song J H, Song J H, Han S K, Hong S K and Yao T 2008 Appl. Phys. Lett. 92 201907
[21]
Schirra M, Schneider R, Reiser A, Prinz G M, Feneberg M, Biskupek J, Kaiser U, Krill C E, Sauer R and Thonke K 2007 Physica B 401--402 362
[22]
Chi D H, Binh L T T, Binh N T, Khanh L D and Long N N 2006 Appl. Surf. Sci. 252 2770
[23]
Schulz H J and Thiede M 1987 Phys. Rev. B 35 18
[24]
Cuscó R, Alarcón Lladó E, Ibáñez J, Artús L, Jiménez J, Wang B and Callahan M J 2007 Phys. Rev. B 75 165202
[25]
Koidl P 1977 Phys. Rev. B 15 2493
[26]
Trinh Thi L, Nguyen Ngoc L and Le Hong H 2009 J. Phys. D. Appl. Phys. 42 065412
[27]
Weakliem H 1962 J. Chem. Phys. 36 2117
[28]
Liu G L, Cao Q, Deng J X, Xing P F, Tian Y F, Chen Y X, Yan S S and Mei L M 2007 Appl. Phys. Lett. 90 052504
[29]
Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173
[30]
Weng Z Z, Zhang J M, Huang Z G and Lin W X 2011 Chin. Phys. B 20 027103
Photoluminescence of green InGaN/GaN MQWs grown on pre-wells Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.