Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057104    DOI: 10.1088/1674-1056/21/5/057104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and optical properties of TiO2:Improved density-functional-theory investigation

Gong Sai(龚赛) and Liu Bang-Gui(刘邦贵)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  TiO2 has been recently used to realize high-temperature ferromagnetic semiconductors. In fact, it has been widely used for a long time as white pigment and sunscreen because of its whiteness, high refractive index, and excellent optical properties. However, its electronic structures and the related properties have not been satisfactorily understood. Here, we use Tran and Blaha's modified Becke-Johnson (TB-mBJ) exchange potential (plus a local density approximation correlation potential) within the density functional theory to investigate electronic structures and optical properties of rutile and anatase TiO2. Our comparative calculations show that the energy gaps obtained from mBJ method agree better with the experimental results than that obtained from local density approximation (LDA) and generalized gradient approximation (GGA), in contrast with substantially overestimated values from many-body perturbation (GW) calculations. As for optical dielectric functions (both real and imaginary parts), refractive index, and extinction coefficients as functions of photon energy, our mBJ calculated results are in excellent agreement with the experimental curves. Our further analysis reveals that these excellent improvements are achieved because mBJ potential describes accurately the energy levels of Ti 3d states. These results should be helpful to understand the high temperature ferromagnetism in doped TiO2. This approach can be used as a standard to understand electronic structures and the related properties of such materials as TiO2.
Keywords:  rutile      anatase      electronic structures      optical properties  
Received:  21 November 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  77.22.-d (Dielectric properties of solids and liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174359, 10874232, and 10774180) and the National Basic Research Program of China (Grant No. 2012CB932302)

Cite this article: 

Gong Sai(龚赛) and Liu Bang-Gui(刘邦贵) Electronic structures and optical properties of TiO2:Improved density-functional-theory investigation 2012 Chin. Phys. B 21 057104

[1] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S Y and Koinuma H 2001 Science 291 854
[2] Hong N H, Ruyter A, Prellier W and Sakai J 2004 Appl. Phys. Lett. 85 6212
[3] Griffin K A, Pakhomov A B, Wang C M, Heald S M and Krishnan K M 2005 Phys. Rev. Lett. 94 157204
[4] Yamada Y, Ueno K, Fukumura T, Yuan H T, Shimotani H, Iwasa Y, Gu L, Tsukimoto S, Ikuhara Y and Kawasaki M 2011 Science 332 1065
[5] Fujishima A and Honda K 1972 Nature 238 37
[6] Cardona M and Harbeke G 1965 Phys. Rev. 137 A1467
[7] Hosaka N, Sekiya T, Satoko C and Kurita S 1997 J. Phys. Soc. Jpn. 66 877
[8] Burdett J K, Hughbanks T, Miller G J, Richardson Jr J W and Smith J V 1987 J. Am. Chem. Soc. 109 3639
[9] Tang H, Prasad K, Sanjines R, Schmid P E and Levy F 1994 J. Appl. Phys. 75 2042
[10] Amtout A and Leonelli R 1995 Phys. Rev. B 51 6842
[11] Tang H, Levy F, Berger H and Schmid P E 1995 Phys. Rev. B 52 7771
[12] Kowalczyk S P, Mefeely F R, Ley L, Gritsyna V T and Schirley A 1977 Solid State Commun. 23 161
[13] Sanjines R, Tang H, Berger H, Gozzo F, Margaritondo G and Levy F 1994 J. Appl. Phys. 75 2945
[14] Lin L B, Mot S D and Lin D L 1993 J. Phys. Chem. Solids 54 907
[15] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[16] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[17] del Sole R and Girlanda R 1993 Phys. Rev. B 48 11789
[18] Asahi R, Taga Y, Mannstadt W and Freeman A J 2000 Phys. Rev. B 61 7459
[19] Thilagam A, Simpson D J and Gerson A R 2011 J. Phys.:Condens. Matter 23 025901
[20] van Schilfgaarde M, Kotani T and Faleev S 2006 Phys. Rev. Lett. 96 226402
[21] Kotani T, van Schilfgaarde M, Faleev S V and Chantis A 2007 J. Phys.:Condens. Matter 19 365236
[22] Thulin L and Guerra J 2008 Phys. Rev. B 77 195112
[23] Chiodo L, Garcia-Lastra J M, Iacomino A, Ossicini S, Zhao J, Petek H and Rubio A 2010 Phys. Rev. B 82 045207
[24] Kang W and Hybertsen M S 2010 Phys. Rev. B 82 085203
[25] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[28] Koller D, Tran F and Blaha P 2011 Phys. Rev. B 83 195134
[29] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k an Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Austria:Karlheinz Schwarz Technische Universität Wien)
[30] Singh D J 2010 Phys. Rev. B 82 155145
[31] Singh D J 2010 Phys. Rev. B 82 205102
[32] Gong S and Liu B G 2011 Phys. Lett. A 375 1477
[33] Guo S D and Liu B G 2012 Chin. Phys. B 21 017101
[34] Guo S D and Liu B G 2011 Europhys. Lett. 93 47006
[35] MacDonald A H, Pickett W E and Koelling D D 1980 J. Phys. C 13 2675
[36] Kunes J, Novak P, Schmid R, Blaha P and Schwarz K 2001 Phys. Rev. B 64 153102
[37] Singh D J and Nordstrom L 2006 Plane Waves, Pseudopotentials and the LAPW Method (2nd Edition) (New York:Springer)
[38] Ambrosch-Draxl C and Sofo J 2006 Comput. Phys. Commun. 175 1
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[3] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[4] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[5] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[6] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[7] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[8] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[9] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[10] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[11] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[12] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[13] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[14] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[15] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
No Suggested Reading articles found!