Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057105    DOI: 10.1088/1674-1056/21/5/057105
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys:A first-principles study

Tan Chang-Long(谭昌龙)a) †, Tian Xiao-Hua (田晓华)a), and Cai Wei(蔡伟)b)
a. College of Applied Science, Harbin University of Science and Technology, Harbin 150080, China;
b. Department of Materials Physics and Chemistry, Harbin Institute of Technology, Harbin 150001, China
Abstract  The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys has been investigated using first-principles calculations. The site preference of Fe in TaRu alloys has been clarified for the first time, and the results show that Fe is predicted to occupy Ru sites. The addition of Fe increases the stability of the Ta50Ru50-xFex β phase, leading to a significant decrease in the β to β′ martensitic transformation temperature. In addition, the mechanism of the Fe alloying effect is explained on the basis of the electronic structure.
Keywords:  shape memory alloys      TaRu      martensitic transformation      electronic structure  
Received:  13 December 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  71.20.Lp (Intermetallic compounds)  
  81.30.Kf (Martensitic transformations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50901026) and the China Postdoctoral Science Foundation (Grant Nos. 20100471084 and 201104418).

Cite this article: 

Tan Chang-Long(谭昌龙), Tian Xiao-Hua (田晓华), and Cai Wei(蔡伟) The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys:A first-principles study 2012 Chin. Phys. B 21 057105

[1] Wayman C M 1992 Prog. Mater. Sci. 36 203
[2] Otsuka K and Ren X 2005 Prog. Mater. Sci. 50 511
[3] Cao L X, Shang J X and Zhang Y 2009 Acta Phys. Sin. 58 7307 (in Chinese)
[4] Ma L, Zhu Z Y, Li M, Yu S D, Cui Q L, Zhou Q, Chen J L and Wu G H 2009 Acta Phys. Sin. 58 3479 (in Chinese)
[5] Otsuka K and Ren X 1999 Intermetallics 7 511
[6] Tan C L, Cai W and Tian X H 2006 Chin. Phys. 15 2718
[7] Beyer J and Mulder J H 1995 Mater. Res. Soc. Symp. Proc. 360 443
[8] Otsuka K and Wayman C M 1998 Shape Memory Materials (Cambridge:Cambridge University Press)
[9] Fonda R W, Jones H N and Vandermeer R A 1998 Scripta Mater. 39 1031
[10] Fonda R W and Vandermeer R A 1997 Phil. Mag. A 76 119
[11] Scherling M A, Das B K and Lieberman D S 1970 Metall. Trans. 1 3273
[12] Das B K, Stern E A and Lieberman D S 1976 Acta Metall. 24 37
[13] He Z R, Zhou J E and Furuya Y 2003 Mater. Sci. Eng. A 348 36
[14] Gao X, Zheng Y F, Cai W, Zhang S and Zhao L C 2004 J. Mater. Sci. Technol. 20 97
[15] Lindquist P G, Wayman C M and Duering T W 1990 Engineering Aspects of Shape Memory Alloys (New York:Butterworth-Heinemann)
[16] Chen F, Wang H B, Zheng Y F, Cai W and Zhao L C 2005 J. Mater. Sci. 40 219
[17] Manzoni A, Chastaing K, Denquin A, Vermaut P, van Humbeeck J and Portier R 2011 Scripta Mater. 64 1071
[18] Segall M, Lindan P, Probet M, Pickard C, Hasnip P, Clark S and Payne M 2002 J. Phys. Condens. Matter 14 2717
[19] Vanderbilt D 1990 Phys. Rev. B 41 7892
[20] Chen J, Li Y, Shang J X and Xu H B 2006 Appl. Phys. Lett. 89 231921
[21] Westbrook J H and Fleischer R L 1994 Intermetallic Compounds (Chichester:Wiley)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[8] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[9] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[10] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[11] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[12] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[13] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[14] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!